Loading…
Simple sequence repeat markers support the presence of a single genotype of Puccinia psidii in Australia
A non‐native rust of Myrtaceae was first detected in Australia in 2010, and was later identified as Puccinia psidii. The presence of many native species of Myrtaceae and a lack of understanding of genetic variability in P. psidii in Australia led to the current study. Low coverage genome sequencing...
Saved in:
Published in: | Plant pathology 2016-09, Vol.65 (7), p.1084-1094 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A non‐native rust of Myrtaceae was first detected in Australia in 2010, and was later identified as Puccinia psidii. The presence of many native species of Myrtaceae and a lack of understanding of genetic variability in P. psidii in Australia led to the current study. Low coverage genome sequencing of P. psidii suggested a genome size of c. 142 Mb. A set of 240 simple sequence repeat (SSR) primers was designed based on the genome sequence information generated. Seventeen isolates of P. psidii comprising 14 from Australia, two from Brazil and one from Hawaii were selected to study genetic variation in the pathogen. Out of 240 initially screened markers, 74% showed amplification among P. psidii isolates and 38% were polymorphic. Primers were fluorescently labelled and genotyping revealed three distinct genotypes among the isolates: one comprising Australian isolates and an isolate from Hawaii, and the second and third comprising two Brazilian isolates. Locus USYD_Pp151 produced a fourth genotype for the Hawaiian isolate of P. psidii. Markers revealed that all Australian isolates were genetically similar to the one from Hawaii. There was no genetic variation among the Australian isolates of P. psidii, supporting the hypothesis that only one genotype of P. psidii was introduced into Australia. The SSR markers developed in this study are highly specific to P. psidii and can be used confidently as a new profiling tool to monitor evolution of P. psidii in Australia and elsewhere. |
---|---|
ISSN: | 0032-0862 1365-3059 |
DOI: | 10.1111/ppa.12501 |