Loading…
Alteration of lipase chain length specificity in the hydrolysis of esters by random mutagenesis
The feasibility of altering the chain length specificity of industrially important Rhizomucor miehei lipase was investigated by randomly mutating Phe94 in the protein groove which is responsible for accommodating the acyl chain of the substrate. The recombinant lipase was initially expressed in E. c...
Saved in:
Published in: | Biotechnology and bioengineering 2001-06, Vol.73 (6), p.433-441 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The feasibility of altering the chain length specificity of industrially important Rhizomucor miehei lipase was investigated by randomly mutating Phe94 in the protein groove which is responsible for accommodating the acyl chain of the substrate. The recombinant lipase was initially expressed in E. coli. Individual colonies were selected, grown, and the DNA sequence of the lipase gene determined. Fourteen of the 19 possible mutants were identified and each of these was transformed into Pichia pastoris which expresses the enzyme extracellularly. The yeast was grown and the supernatants assessed in several assays with long and short chain substrates. Based on this preliminary screen, one mutant, Phe94Gly, was selected and purified to homogeneity for further analysis. It was found that the substitution of phenylalanine 94 with glycine led to an enzyme which was about six times less active against resorufin ester but displayed 3–4 times higher activity with short chain substrates such as butyric acid esters. The observed alteration to the enzyme specificity was rationalised using the available 3D structure of the lipase. © 2001 John Wiley & Sons, Inc. Biotechnol Bioeng 73: 433–441, 2001. |
---|---|
ISSN: | 0006-3592 1097-0290 |
DOI: | 10.1002/bit.1077 |