Loading…
Interannual fluctuations in atmospheric angular momentum simulated by the National Centers for Environmental Prediction medium range forecast model
An earlier study established the existence of globally coherent interannual fluctuations in atmospheric angular momentum (AAM), associated with the El Nino-Southern Oscillation (ENSO) cycle. In this paper, we pursue the origin and the structure of these fluctuations using an ensemble of experiments...
Saved in:
Published in: | Journal of Geophysical Research 1997-03, Vol.102 (D6), p.6703-6713 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An earlier study established the existence of globally coherent interannual fluctuations in atmospheric angular momentum (AAM), associated with the El Nino-Southern Oscillation (ENSO) cycle. In this paper, we pursue the origin and the structure of these fluctuations using an ensemble of experiments generated by the National Centers for Environmental Prediction, medium range forecast model version 9. In the control experiments, where the observed sea surface temperatures (SSTs) were used as the lower boundary conditions, the model captures the characteristic V-like structure in time-latitude plots of zonally averaged AAM, while experiments with climatological SSTs and those with either perpetual warm or cold ENSO conditions superimposed on the climatological SSTs failed to reproduce this structure. The numerical results indicate that these AAM structures are related to SST variations associated with transitions between different phases of the ENSO cycle and have both propagating and standing components. The largest zonal wind contribution from the levels studied (850, 500, and 200 hPa) is at 200 hPa, where the tropical convective outflow is the strongest. Composites of zonal wind and geopotential height show a clear relationship between the stages of the global AAM oscillation and the ENSO cycle. The strong similarity between the simulated and observed AAM series attests to the model's ability to realistically simulate the interannual response of the atmosphere to ENSO SST anomalies. |
---|---|
ISSN: | 0148-0227 2156-2202 |
DOI: | 10.1029/96JD02609 |