Loading…

Breather transition dynamics, Peregrine combs and walls, and modulation instability in a variable-coefficient nonlinear Schrödinger equation with higher-order effects

We study a variable-coefficient nonlinear Schrödinger (vc-NLS) equation with higher-order effects. We show that the breather solution can be converted into four types of nonlinear waves on constant backgrounds including the multipeak solitons, antidark soliton, periodic wave, and W-shaped soliton. I...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. E 2016-06, Vol.93 (6), p.062217-062217, Article 062217
Main Authors: Wang, Lei, Zhang, Jian-Hui, Liu, Chong, Li, Min, Qi, Feng-Hua
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study a variable-coefficient nonlinear Schrödinger (vc-NLS) equation with higher-order effects. We show that the breather solution can be converted into four types of nonlinear waves on constant backgrounds including the multipeak solitons, antidark soliton, periodic wave, and W-shaped soliton. In particular, the transition condition requiring the group velocity dispersion (GVD) and third-order dispersion (TOD) to scale linearly is obtained analytically. We display several kinds of elastic interactions between the transformed nonlinear waves. We discuss the dispersion management of the multipeak soliton, which indicates that the GVD coefficient controls the number of peaks of the wave while the TOD coefficient has compression effect. The gain or loss has influence on the amplitudes of the multipeak soliton. We further derive the breather multiple births and Peregrine combs by using multiple compression points of Akhmediev breathers and Peregrine rogue waves in optical fiber systems with periodic GVD modulation. In particular, we demonstrate that the Peregrine comb can be converted into a Peregrine wall by the proper choice of the amplitude of the periodic GVD modulation. The Peregrine wall can be seen as an intermediate state between rogue waves and W-shaped solitons. We finally find that the modulational stability regions with zero growth rate coincide with the transition condition using rogue wave eigenvalues. Our results could be useful for the experimental control and manipulation of the formation of generalized Peregrine rogue waves in diverse physical systems modeled by vc-NLS equation with higher-order effects.
ISSN:2470-0045
2470-0053
DOI:10.1103/PhysRevE.93.062217