Loading…

Association of genetic and phenotypic variability with geography and climate in three southern California oaks

PREMISE OF THE STUDY: Geography and climate shape the distribution of organisms, their genotypes, and their phenotypes. To understand historical and future evolutionary and ecological responses to climate, we compared the association of geography and climate of three oak species (Quercus engelmannii...

Full description

Saved in:
Bibliographic Details
Published in:American journal of botany 2016-01, Vol.103 (1), p.73-85
Main Authors: Riordan, Erin C., Gugger, Paul F., Ortego, Joaquín, Smith, Carrie, Gaddis, Keith, Thompson, Pam, Sork, Victoria L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:PREMISE OF THE STUDY: Geography and climate shape the distribution of organisms, their genotypes, and their phenotypes. To understand historical and future evolutionary and ecological responses to climate, we compared the association of geography and climate of three oak species (Quercus engelmannii, Quercus berberidifolia, and Quercus cornelius-mulleri) in an environmentally heterogeneous region of southern California at three organizational levels: regional species distributions, genetic variation, and phenotypic variation. METHODS: We identified climatic variables influencing regional distribution patterns using species distribution models (SDMs), and then tested whether those individual variables are important in shaping genetic (microsatellite) and phenotypic (leaf morphology) variation. We estimated the relative contributions of geography and climate using multivariate redundancy analyses (RDA) with variance partitioning. KEY RESULTS: The modeled distribution of each species was influenced by climate differently. Our analysis of genetic variation using RDA identified small but significant associations between genetic variation with climate and geography in Q. engelmannii and Q. cornelius-mulleri, but not in Q. berberidifolia, and climate explained more of the variation. Our analysis of phenotypic variation in Q. engelmannii indicated that climate had more impact than geography, but not in Q. berberidifolia. Throughout our analyses, we did not find a consistent pattern in effects of individual climatic variables. CONCLUSIONS: Our comparative analysis illustrates that climate influences tree response at all organizational levels, but the important climate factors vary depending on the level and on the species; Because of these species-specific and level-specific responses, today's sympatric species are unlikely to have similar distributions in the future.
ISSN:0002-9122
1537-2197
DOI:10.3732/ajb.1500135