Loading…

High accuracy android malware detection using ensemble learning

With over 50 billion downloads and more than 1.3 million apps in Google's official market, Android has continued to gain popularity among smartphone users worldwide. At the same time there has been a rise in malware targeting the platform, with more recent strains employing highly sophisticated...

Full description

Saved in:
Bibliographic Details
Published in:IET information security 2015-11, Vol.9 (6), p.313-320
Main Authors: Yerima, Suleiman Y, Sezer, Sakir, Muttik, Igor
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:With over 50 billion downloads and more than 1.3 million apps in Google's official market, Android has continued to gain popularity among smartphone users worldwide. At the same time there has been a rise in malware targeting the platform, with more recent strains employing highly sophisticated detection avoidance techniques. As traditional signature-based methods become less potent in detecting unknown malware, alternatives are needed for timely zero-day discovery. Thus, this study proposes an approach that utilises ensemble learning for Android malware detection. It combines advantages of static analysis with the efficiency and performance of ensemble machine learning to improve Android malware detection accuracy. The machine learning models are built using a large repository of malware samples and benign apps from a leading antivirus vendor. Experimental results and analysis presented shows that the proposed method which uses a large feature space to leverage the power of ensemble learning is capable of 97.3–99% detection accuracy with very low false positive rates.
ISSN:1751-8709
1751-8717
1751-8717
DOI:10.1049/iet-ifs.2014.0099