Loading…
Unbiased Monte Carlo for optimization and functions of expectations via multi-level randomization
We present general principles for the design and analysis of unbiased Monte Carlo estimators for quantities such as α = g(E (X)), where E (X) denotes the expectation of a (possibly multidimensional) random variable X, and g(·) is a given deterministic function. Our estimators possess finite work-nor...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present general principles for the design and analysis of unbiased Monte Carlo estimators for quantities such as α = g(E (X)), where E (X) denotes the expectation of a (possibly multidimensional) random variable X, and g(·) is a given deterministic function. Our estimators possess finite work-normalized variance under mild regularity conditions such as local twice differentiability of g(·) and suitable growth and finite-moment assumptions. We apply our estimator to various settings of interest, such as optimal value estimation in the context of Sample Average Approximations, and unbiased steady-state simulation of regenerative processes. Other applications include unbiased estimators for particle filters and conditional expectations. |
---|---|
ISSN: | 1558-4305 |
DOI: | 10.1109/WSC.2015.7408524 |