Loading…

On Generating Discrete Integrable Systems via Lie Algebras and Commutator Equations

In the paper,we introduce the Lie algebras and the commutator equations to rewrite the Tu-d scheme for generating discrete integrable systems regularly.By the approach the various loop algebras of the Lie algebra A_1are defined so that the well-known Toda hierarchy and a novel discrete integrable sy...

Full description

Saved in:
Bibliographic Details
Published in:Communications in theoretical physics 2016-03, Vol.65 (3), p.335-340, Article 335
Main Author: 张玉峰 Honwah Tam
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the paper,we introduce the Lie algebras and the commutator equations to rewrite the Tu-d scheme for generating discrete integrable systems regularly.By the approach the various loop algebras of the Lie algebra A_1are defined so that the well-known Toda hierarchy and a novel discrete integrable system are obtained,respectively.A reduction of the later hierarchy is just right the famous Ablowitz-Ladik hierarchy.Finally,via two different enlarging Lie algebras of the Lie algebra A_1,we derive two resulting differential-difference integrable couplings of the Toda hierarchy,of course,they are all various discrete expanding integrable models of the Toda hierarchy.When the introduced spectral matrices are higher degrees,the way presented in the paper is more convenient to generate discrete integrable equations than the Tu-d scheme by using the software Maple.
ISSN:0253-6102
1572-9494
DOI:10.1088/0253-6102/65/3/335