Loading…
On Generating Discrete Integrable Systems via Lie Algebras and Commutator Equations
In the paper,we introduce the Lie algebras and the commutator equations to rewrite the Tu-d scheme for generating discrete integrable systems regularly.By the approach the various loop algebras of the Lie algebra A_1are defined so that the well-known Toda hierarchy and a novel discrete integrable sy...
Saved in:
Published in: | Communications in theoretical physics 2016-03, Vol.65 (3), p.335-340, Article 335 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the paper,we introduce the Lie algebras and the commutator equations to rewrite the Tu-d scheme for generating discrete integrable systems regularly.By the approach the various loop algebras of the Lie algebra A_1are defined so that the well-known Toda hierarchy and a novel discrete integrable system are obtained,respectively.A reduction of the later hierarchy is just right the famous Ablowitz-Ladik hierarchy.Finally,via two different enlarging Lie algebras of the Lie algebra A_1,we derive two resulting differential-difference integrable couplings of the Toda hierarchy,of course,they are all various discrete expanding integrable models of the Toda hierarchy.When the introduced spectral matrices are higher degrees,the way presented in the paper is more convenient to generate discrete integrable equations than the Tu-d scheme by using the software Maple. |
---|---|
ISSN: | 0253-6102 1572-9494 |
DOI: | 10.1088/0253-6102/65/3/335 |