Loading…

Tying quantum knots

As topologically stable objects in field theories, knots have been put forward to explain various persistent phenomena in systems ranging from atoms and molecules to cosmic textures in the universe. Recent experiments have reported the observation of knots in different classical contexts. However, n...

Full description

Saved in:
Bibliographic Details
Published in:Nature physics 2016-05, Vol.12 (5), p.478-483
Main Authors: Hall, D. S., Ray, M. W., Tiurev, K., Ruokokoski, E., Gheorghe, A. H., Möttönen, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:As topologically stable objects in field theories, knots have been put forward to explain various persistent phenomena in systems ranging from atoms and molecules to cosmic textures in the universe. Recent experiments have reported the observation of knots in different classical contexts. However, no experimental observation of knots has yet been reported in quantum matter. Here we demonstrate the experimental creation and detection of knot solitons in the order parameter of a spinor Bose–Einstein condensate. The observed texture corresponds to a topologically nontrivial element of the third homotopy group and exhibits the celebrated Hopf fibration, which unites many seemingly unrelated physical phenomena. Our work calls for future studies of the stability and dynamics knot solitons in the quantum regime. Knots have been observed in a variety of classical systems, but so far not in the quantum regime. Knot solitons have now been created in a spinor Bose–Einstein condensate, exhibiting interesting topological structures, including Hopf fibration.
ISSN:1745-2473
1745-2481
DOI:10.1038/nphys3624