Loading…

Hardy spaces for Fourier-Bessel expansions

We study Hardy spaces for Fourier-Bessel expansions associated with Bessel operators on and ((0, 1), dx ). We define Hardy spaces H 1 as the sets of L 1 -functions whose maximal functions for the corresponding Poisson semigroups belong to L 1 . Atomic characterizations are obtained.

Saved in:
Bibliographic Details
Published in:Journal d'analyse mathématique (Jerusalem) 2016-02, Vol.128 (1), p.261-287
Main Authors: Dziubański, Jacek, Preisner, Marcin, Roncal, Luz, Stinga, Pablo Raúl
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study Hardy spaces for Fourier-Bessel expansions associated with Bessel operators on and ((0, 1), dx ). We define Hardy spaces H 1 as the sets of L 1 -functions whose maximal functions for the corresponding Poisson semigroups belong to L 1 . Atomic characterizations are obtained.
ISSN:0021-7670
1565-8538
DOI:10.1007/s11854-016-0009-9