Loading…
Hardy spaces for Fourier-Bessel expansions
We study Hardy spaces for Fourier-Bessel expansions associated with Bessel operators on and ((0, 1), dx ). We define Hardy spaces H 1 as the sets of L 1 -functions whose maximal functions for the corresponding Poisson semigroups belong to L 1 . Atomic characterizations are obtained.
Saved in:
Published in: | Journal d'analyse mathématique (Jerusalem) 2016-02, Vol.128 (1), p.261-287 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study Hardy spaces for Fourier-Bessel expansions associated with Bessel operators on
and ((0, 1),
dx
). We define Hardy spaces
H
1
as the sets of
L
1
-functions whose maximal functions for the corresponding Poisson semigroups belong to
L
1
. Atomic characterizations are obtained. |
---|---|
ISSN: | 0021-7670 1565-8538 |
DOI: | 10.1007/s11854-016-0009-9 |