Loading…
Shape asymmetry: a morphological indicator for automatic detection of galaxies in the post-coalescence merger stages
We present a new morphological indicator designed for automated recognition of galaxies with faint asymmetric tidal features suggestive of an ongoing or past merger. We use the new indicator, together with pre-existing diagnostics of galaxy structure to study the role of galaxy mergers in inducing (...
Saved in:
Published in: | Monthly notices of the Royal Astronomical Society 2016-03, Vol.456 (3), p.3032-3052 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present a new morphological indicator designed for automated recognition of galaxies with faint asymmetric tidal features suggestive of an ongoing or past merger. We use the new indicator, together with pre-existing diagnostics of galaxy structure to study the role of galaxy mergers in inducing (post-) starburst spectral signatures in local galaxies, and investigate whether (post-) starburst galaxies play a role in the build-up of the ‘red sequence’. Our morphological and structural analysis of an evolutionary sample of 335 (post-) starburst galaxies in the Sloan Digital Sky Survey DR7 with starburst ages 0 < t
SB < 0.6 Gyr, shows that 45 per cent of galaxies with young starbursts (t
SB < 0.1 Gyr) show signatures of an ongoing or past merger. This fraction declines with starburst age, and we find a good agreement between automated and visual classifications. The majority of the oldest (post-) starburst galaxies in our sample (t
SB ∼ 0.6 Gyr) have structural properties characteristic of early-type discs and are not as highly concentrated as the fully quenched galaxies commonly found on the ‘red sequence’ in the present day Universe. This suggests that, if (post-) starburst galaxies are a transition phase between active star-formation and quiescence, they do not attain the structure of presently quenched galaxies within the first 0.6 Gyr after the starburst. |
---|---|
ISSN: | 0035-8711 1365-2966 |
DOI: | 10.1093/mnras/stv2878 |