Loading…

Damage and fracture algorithm using the screened Poisson equation and local remeshing

We propose a crack propagation algorithm which is independent of particular constitutive laws and specific element technology. It consists of a localization limiter in the form of the screened Poisson equation with local mesh refinement. This combination allows the capturing of strain localization w...

Full description

Saved in:
Bibliographic Details
Published in:Engineering fracture mechanics 2016-06, Vol.158, p.116-143
Main Authors: Areias, P., Msekh, M.A., Rabczuk, T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We propose a crack propagation algorithm which is independent of particular constitutive laws and specific element technology. It consists of a localization limiter in the form of the screened Poisson equation with local mesh refinement. This combination allows the capturing of strain localization with good resolution, even in the absence of a sufficiently fine initial mesh. In addition, crack paths are implicitly defined from the localized region, circumventing the need for a specific direction criterion. Observed phenomena such as multiple crack growth and shielding emerge naturally from the algorithm. In contrast with alternative regularization algorithms, curved cracks are correctly represented. A staggered scheme for standard equilibrium and screened equations is used. Element subdivision is based on edge split operations using a given constitutive quantity (either damage or void fraction). To assess the robustness and accuracy of this algorithm, we use both quasi-brittle benchmarks and ductile tests.
ISSN:0013-7944
1873-7315
DOI:10.1016/j.engfracmech.2015.10.042