Loading…
Exact solutions of nonlinear Schrödinger equation by using symbolic computation
The (G′/G,1/G)‐expansion method and (1/G′)‐expansion method are interesting approaches to find new and more general exact solutions to the nonlinear evolution equations. In this paper, these methods are applied to construct new exact travelling wave solutions of nonlinear Schrödinger equation. The t...
Saved in:
Published in: | Mathematical methods in the applied sciences 2016-05, Vol.39 (8), p.2093-2099 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The (G′/G,1/G)‐expansion method and (1/G′)‐expansion method are interesting approaches to find new and more general exact solutions to the nonlinear evolution equations. In this paper, these methods are applied to construct new exact travelling wave solutions of nonlinear Schrödinger equation. The travelling wave solutions are expressed by hyperbolic functions, trigonometric functions and rational functions. It is shown that the proposed methods provide a powerful mathematical tool for solving nonlinear wave equations in mathematical physics and engineering. Copyright © 2015 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0170-4214 1099-1476 |
DOI: | 10.1002/mma.3626 |