Loading…

Real-Time Specific Light-Up Sensing of Transferrin Receptor: Image-Guided Photodynamic Ablation of Cancer Cells through Controlled Cytomembrane Disintegration

Transferrin receptor (TfR) represents a unique target for specific imaging of cancer cells and targeted delivery of therapeutic reagents. Detection and qualification of TfR is thus of great importance for cancer diagnosis and therapy. In this contribution, a light-up probe TPETH-2T7 was developed by...

Full description

Saved in:
Bibliographic Details
Published in:Analytical chemistry (Washington) 2016-05, Vol.88 (9), p.4841-4848
Main Authors: Zhang, Ruoyu, Feng, Guangxue, Zhang, Chong-Jing, Cai, Xiaolei, Cheng, Xiamin, Liu, Bin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Transferrin receptor (TfR) represents a unique target for specific imaging of cancer cells and targeted delivery of therapeutic reagents. Detection and qualification of TfR is thus of great importance for cancer diagnosis and therapy. In this contribution, a light-up probe TPETH-2T7 was developed by conjugating a red-emissive photosensitizer with aggregation-induced emission (AIE) characteristics to a TfR-targeting peptide T7. The probe is almost nonemissive by itself, but it gives turn-on fluorescence in the presence of TfR with a detection limit of 0.45 μg/mL. Cellular experiments show that the probe specifically binds to TfR-overexpressed cancer cells. Real-time imaging results reveal that the probe stains the MDA-MB-231 cell membrane in 30 min, which is followed by probe internalization. Experiments on image-guided photodynamic cancer ablation show that the therapeutic performance is better when TPETH-2T7 is localized on the cell membrane as compared to that being internalized into cells. Confocal laser scanning microscopy (CLSM) study reveals that cytomembrane disintegration allows quick ablation of MDA-MB-231 cells.
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.6b00524