Loading…

Long-term landscape trajectory — Can we make predictions about landscape form and function for post-mining landforms?

A significant issue for the application of numerical Landscape Evolution Models (LEMs) is their calibration/parameterisation and validation. LEMs are now at the stage of development where if calibrated, they can provide meaningful and useful results. However, before use, each LEM requires a set of d...

Full description

Saved in:
Bibliographic Details
Published in:Geomorphology (Amsterdam, Netherlands) Netherlands), 2016-08, Vol.266, p.121-132
Main Authors: Hancock, G.R., Lowry, J.B.C., Coulthard, T.J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A significant issue for the application of numerical Landscape Evolution Models (LEMs) is their calibration/parameterisation and validation. LEMs are now at the stage of development where if calibrated, they can provide meaningful and useful results. However, before use, each LEM requires a set of data and parameter values for it to run reliably and most importantly produce results with some measure of precision and accuracy. This calibration/validation process is largely carried out using parameter values determined from present day, or recent surface conditions which are themselves product of much longer-term geology-soil-climate-vegetation interactions. Here we examine the reliability of an LEM to predict catchment form over geological time (500,000years) for a potential rehabilitated mine landform using defensible parameters derived from field plots. The findings demonstrate that there is no equifinality in landscape form with different parameter sets producing geomorphically and hydrologically unique landscapes throughout their entire evolution. This shows that parameterisation does matter over geological time scales. However, for shorter time scales (
ISSN:0169-555X
1872-695X
DOI:10.1016/j.geomorph.2016.05.014