Loading…
Integrability for Nonlinear Time-Delay Systems
In this note, the notion of integrability is defined for 1-forms defined in the time-delay context. While in the delay-free case, a set of 1-forms defines a vector space, it is shown that 1-forms computed for time-delay systems have to be viewed as elements of a module over a certain non-commutative...
Saved in:
Published in: | IEEE transactions on automatic control 2016-07, Vol.61 (7), p.1912-1917 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this note, the notion of integrability is defined for 1-forms defined in the time-delay context. While in the delay-free case, a set of 1-forms defines a vector space, it is shown that 1-forms computed for time-delay systems have to be viewed as elements of a module over a certain non-commutative polynomial ring. Two notions of integrability are defined, strong and weak integrability, which coincide in the delay-free case. Necessary and sufficient conditions are given to check if a set of 1-forms is strongly or weakly integrable. To show the importance of the topic, integrability of 1-forms is used to characterize the accessibility property for nonlinear time-delay systems. The possibility of transforming a system into a certain normal form is also considered. |
---|---|
ISSN: | 0018-9286 1558-2523 |
DOI: | 10.1109/TAC.2015.2482003 |