Loading…
Babich’s Expansion and High-Order Eulerian Asymptotics for Point-Source Helmholtz Equations
The usual geometrical-optics expansion of the solution for the Helmholtz equation of a point source in an inhomogeneous medium yields two equations: an eikonal equation for the traveltime function, and a transport equation for the amplitude function. However, two difficulties arise immediately: one...
Saved in:
Published in: | Journal of scientific computing 2016-06, Vol.67 (3), p.883-908 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The usual geometrical-optics expansion of the solution for the Helmholtz equation of a point source in an inhomogeneous medium yields two equations: an eikonal equation for the traveltime function, and a transport equation for the amplitude function. However, two difficulties arise immediately: one is how to initialize the amplitude at the point source as the wavefield is singular there; the other is that in even-dimension spaces the usual geometrical-optics expansion does not yield a uniform asymptotic approximation close to the source. Babich (USSR Comput Math Math Phys 5(5):247–251,
1965
) developed a Hankel-based asymptotic expansion which can overcome these two difficulties with ease. Starting from Babich’s expansion, we develop high-order Eulerian asymptotics for Helmholtz equations in inhomogeneous media. Both the eikonal and transport equations are solved by high-order Lax–Friedrichs weighted non-oscillatory (WENO) schemes. We also prove that fifth-order Lax–Friedrichs WENO schemes for eikonal equations are convergent when the eikonal is smooth. Numerical examples demonstrate that new Eulerian high-order asymptotic methods are uniformly accurate in the neighborhood of the source and away from it. |
---|---|
ISSN: | 0885-7474 1573-7691 |
DOI: | 10.1007/s10915-015-0111-7 |