Loading…

Gamma‐aminobutyric acid (GABA) permeates ovine ruminal and jejunal epithelia, mainly by passive diffusion

Summary Gamma‐aminobutyric acid (GABA) represents the most abundant inhibitory neurotransmitter in the mammalian brain. GABA is also produced in plants and/or by the microbial conversion of amino acids. Thus, ruminants may be forced to take up significant amounts of GABA from their diet. However, it...

Full description

Saved in:
Bibliographic Details
Published in:Journal of animal physiology and animal nutrition 2017-02, Vol.101 (1), p.38-45
Main Authors: Rackwitz, R., Gäbel, G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Summary Gamma‐aminobutyric acid (GABA) represents the most abundant inhibitory neurotransmitter in the mammalian brain. GABA is also produced in plants and/or by the microbial conversion of amino acids. Thus, ruminants may be forced to take up significant amounts of GABA from their diet. However, it is not known whether exogenously acquired GABA might permeate the gastrointestinal barrier in such quantities as to induce systemic alterations. Thus, this study pursues the question of where within the ruminant's GI tract and by which pathways GABA may be taken up from the ingesta. The jejunal and ruminal epithelia of sheep were mounted in Ussing chambers under short‐circuit conditions. The flux rates of radiolabelled GABA from the mucosal to the serosal side (Jms) and vice versa (Jsm) were measured. GABA was applied in various concentrations with adjustment of the mucosal pH to 6.1 or 7.4. Furthermore, beta‐alanine or glycine was used as a competitive inhibitor for GABA transport. In both the jejunal and ruminal epithelium, the Jms of GABA was linearly correlated to the mucosal GABA concentration. However, Jms across the jejunal epithelium was approximately 10‐fold higher than Jms across the ruminal epithelium. When 0.5 mmol/l GABA was applied on both sides of the epithelium, no net flux could be observed in the jejunal epithelia. Additionally, there was no effect of decreased mucosal pH or the application of glycine or beta‐alanine under these conditions. The Jms and Jsm of GABA were linearly correlated to the transepithelial conductance. Our results suggest that GABA is taken up from the small intestine rather than from the rumen. Due to the lack of influence of pH and competitive inhibitors, this uptake seems to occur primarily via passive diffusion.
ISSN:0931-2439
1439-0396
DOI:10.1111/jpn.12497