Loading…
Extracellular matrix-based cryogels for cartilage tissue engineering
[Display omitted] In this study, we investigated various highly porous extracellular matrix (ECM)-based cryogels for cartilage tissue engineering. For the fabrication of ECM-based cryogels, either methacrylated chondroitin sulfate (MeCS) or methacrylated hyaluronic acid (MeHA) were cross-linked alon...
Saved in:
Published in: | International journal of biological macromolecules 2016-12, Vol.93 (Pt B), p.1410-1419 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | [Display omitted]
In this study, we investigated various highly porous extracellular matrix (ECM)-based cryogels for cartilage tissue engineering. For the fabrication of ECM-based cryogels, either methacrylated chondroitin sulfate (MeCS) or methacrylated hyaluronic acid (MeHA) were cross-linked along with poly (ethylene glycol) diacrylates (PEGDA) via free radical polymerization under freezing conditions. This procedure induces ice crystallization (used as a porogen) prior polymer crosslinking in which, after complete cryopolymerization, a thawing process transforms the ice crystals into a unique interconnected macroporous structure within ECM-cryogels. The developed ECM-cryogels exhibited an average macroporosity of 75% and supported the infiltration of chondrocyteds. When rabbit chondrocytes were cultured on ECM-cryogels, MeCS-based cryogels stimulated aggrecan gene expression and GAG accumulation, whereas MeHA-based cryogels stimulated type II collagen gene expression and collagen accumulation. These results demonstrate that design of ECM-based cryogels can play an important role in promoting specific ECM proteins secretion for cartilage tissue engineering. |
---|---|
ISSN: | 0141-8130 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2016.05.024 |