Loading…
Pulse Duplicator Hydrodynamic Testing of Bioengineered Biological Heart Valves
There are many heart valve replacements currently available on the market; however, these devices are not ideal for pediatric patients with congenital heart valve defects. Decellularized valve substitutes offer potential for improved clinical outcomes and require pre-clinical testing guidelines and...
Saved in:
Published in: | Cardiovascular engineering and technology 2016-12, Vol.7 (4), p.352-362 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c372t-461558408a42760234eca2a3d84a7a8ebeb7e37db73a61770fdc94b3843e7de53 |
---|---|
cites | cdi_FETCH-LOGICAL-c372t-461558408a42760234eca2a3d84a7a8ebeb7e37db73a61770fdc94b3843e7de53 |
container_end_page | 362 |
container_issue | 4 |
container_start_page | 352 |
container_title | Cardiovascular engineering and technology |
container_volume | 7 |
creator | Buse, Eric E. Hilbert, Stephen L. Hopkins, Richard A. Converse, Gabriel L. |
description | There are many heart valve replacements currently available on the market; however, these devices are not ideal for pediatric patients with congenital heart valve defects. Decellularized valve substitutes offer potential for improved clinical outcomes and require pre-clinical testing guidelines and testing systems suitable for non-crosslinked, biological heart valves. The objective of this study was to assess the hydrodynamic performance of intact, bioengineered pulmonary valves using a custom pulse duplicator capable of testing intact biological valved conduits. The mechanical behavior of valve associated sinus and arterial tissue was also evaluated under biaxial loading. Cryopreserved, decellularized, extracellular matrix (ECM) conditioned and glutaraldehyde fixed valves showed reduced pressure gradients and increased effective orifice area for decellularized and ECM conditioned valves. ECM conditioning resulted in increased elastic modulus but decreased stretch in circumferential and longitudinal directions under biaxial loading. Overall, decellularization and ECM conditioning did not compromise the scaffolds, which exhibited satisfactory bench top performance. |
doi_str_mv | 10.1007/s13239-016-0275-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1826731087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880828024</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-461558408a42760234eca2a3d84a7a8ebeb7e37db73a61770fdc94b3843e7de53</originalsourceid><addsrcrecordid>eNp1kF1LwzAYhYMobsz9AG-k4I031Xy1SS91fkwQ9WKKdyFt3paOrplJK-zfm9E5RDA3b8L7nJPDQeiU4EuCsbjyhFGWxZikMaYiibMDNCYyzWKOM3m4v8uPEZp6v8ThMJphTo_RiArOmeRkjJ5f-8ZDdNuvm7rQnXXRfGOcNZtWr-oiWoDv6raKbBnd1Bbaqm4BHJjtq7FVkDTRHLTronfdfIE_QUelDobT3Zygt_u7xWweP708PM6un-KCCdrFPCVJIkM4zalIMWUcCk01M5JroSXkkAtgwuSC6ZQIgUtTZDwPkRkIAwmboIvBd-3sZx9CqlXtC2ga3YLtvSKSpoIRLEVAz_-gS9u7NqQLlMSSSkx5oMhAFc5676BUa1evtNsogtW2bzX0rULfatu3yoLmbOfc5yswe8VPuwGgA-DDqq3A_fr6X9dvnziJig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880828024</pqid></control><display><type>article</type><title>Pulse Duplicator Hydrodynamic Testing of Bioengineered Biological Heart Valves</title><source>Springer Nature</source><creator>Buse, Eric E. ; Hilbert, Stephen L. ; Hopkins, Richard A. ; Converse, Gabriel L.</creator><creatorcontrib>Buse, Eric E. ; Hilbert, Stephen L. ; Hopkins, Richard A. ; Converse, Gabriel L.</creatorcontrib><description>There are many heart valve replacements currently available on the market; however, these devices are not ideal for pediatric patients with congenital heart valve defects. Decellularized valve substitutes offer potential for improved clinical outcomes and require pre-clinical testing guidelines and testing systems suitable for non-crosslinked, biological heart valves. The objective of this study was to assess the hydrodynamic performance of intact, bioengineered pulmonary valves using a custom pulse duplicator capable of testing intact biological valved conduits. The mechanical behavior of valve associated sinus and arterial tissue was also evaluated under biaxial loading. Cryopreserved, decellularized, extracellular matrix (ECM) conditioned and glutaraldehyde fixed valves showed reduced pressure gradients and increased effective orifice area for decellularized and ECM conditioned valves. ECM conditioning resulted in increased elastic modulus but decreased stretch in circumferential and longitudinal directions under biaxial loading. Overall, decellularization and ECM conditioning did not compromise the scaffolds, which exhibited satisfactory bench top performance.</description><identifier>ISSN: 1869-408X</identifier><identifier>EISSN: 1869-4098</identifier><identifier>DOI: 10.1007/s13239-016-0275-9</identifier><identifier>PMID: 27443841</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Animals ; Biaxial loads ; Bioengineering ; Biomedical Engineering and Bioengineering ; Biomedicine ; Bioprosthesis ; Cardiology ; Conditioning ; Crosslinking ; Engineering ; Equipment Failure Analysis - methods ; Glutaraldehyde ; Heart ; Heart Valve Prosthesis ; Heart valves ; Hydrodynamics ; Mechanical properties ; Modulus of elasticity ; Pressure gradients ; Reproduction (copying) ; Scaffolds ; Swine ; Tissue Engineering</subject><ispartof>Cardiovascular engineering and technology, 2016-12, Vol.7 (4), p.352-362</ispartof><rights>Biomedical Engineering Society 2016</rights><rights>Copyright Springer Science & Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-461558408a42760234eca2a3d84a7a8ebeb7e37db73a61770fdc94b3843e7de53</citedby><cites>FETCH-LOGICAL-c372t-461558408a42760234eca2a3d84a7a8ebeb7e37db73a61770fdc94b3843e7de53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27443841$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Buse, Eric E.</creatorcontrib><creatorcontrib>Hilbert, Stephen L.</creatorcontrib><creatorcontrib>Hopkins, Richard A.</creatorcontrib><creatorcontrib>Converse, Gabriel L.</creatorcontrib><title>Pulse Duplicator Hydrodynamic Testing of Bioengineered Biological Heart Valves</title><title>Cardiovascular engineering and technology</title><addtitle>Cardiovasc Eng Tech</addtitle><addtitle>Cardiovasc Eng Technol</addtitle><description>There are many heart valve replacements currently available on the market; however, these devices are not ideal for pediatric patients with congenital heart valve defects. Decellularized valve substitutes offer potential for improved clinical outcomes and require pre-clinical testing guidelines and testing systems suitable for non-crosslinked, biological heart valves. The objective of this study was to assess the hydrodynamic performance of intact, bioengineered pulmonary valves using a custom pulse duplicator capable of testing intact biological valved conduits. The mechanical behavior of valve associated sinus and arterial tissue was also evaluated under biaxial loading. Cryopreserved, decellularized, extracellular matrix (ECM) conditioned and glutaraldehyde fixed valves showed reduced pressure gradients and increased effective orifice area for decellularized and ECM conditioned valves. ECM conditioning resulted in increased elastic modulus but decreased stretch in circumferential and longitudinal directions under biaxial loading. Overall, decellularization and ECM conditioning did not compromise the scaffolds, which exhibited satisfactory bench top performance.</description><subject>Animals</subject><subject>Biaxial loads</subject><subject>Bioengineering</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Bioprosthesis</subject><subject>Cardiology</subject><subject>Conditioning</subject><subject>Crosslinking</subject><subject>Engineering</subject><subject>Equipment Failure Analysis - methods</subject><subject>Glutaraldehyde</subject><subject>Heart</subject><subject>Heart Valve Prosthesis</subject><subject>Heart valves</subject><subject>Hydrodynamics</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Pressure gradients</subject><subject>Reproduction (copying)</subject><subject>Scaffolds</subject><subject>Swine</subject><subject>Tissue Engineering</subject><issn>1869-408X</issn><issn>1869-4098</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kF1LwzAYhYMobsz9AG-k4I031Xy1SS91fkwQ9WKKdyFt3paOrplJK-zfm9E5RDA3b8L7nJPDQeiU4EuCsbjyhFGWxZikMaYiibMDNCYyzWKOM3m4v8uPEZp6v8ThMJphTo_RiArOmeRkjJ5f-8ZDdNuvm7rQnXXRfGOcNZtWr-oiWoDv6raKbBnd1Bbaqm4BHJjtq7FVkDTRHLTronfdfIE_QUelDobT3Zygt_u7xWweP708PM6un-KCCdrFPCVJIkM4zalIMWUcCk01M5JroSXkkAtgwuSC6ZQIgUtTZDwPkRkIAwmboIvBd-3sZx9CqlXtC2ga3YLtvSKSpoIRLEVAz_-gS9u7NqQLlMSSSkx5oMhAFc5676BUa1evtNsogtW2bzX0rULfatu3yoLmbOfc5yswe8VPuwGgA-DDqq3A_fr6X9dvnziJig</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Buse, Eric E.</creator><creator>Hilbert, Stephen L.</creator><creator>Hopkins, Richard A.</creator><creator>Converse, Gabriel L.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20161201</creationdate><title>Pulse Duplicator Hydrodynamic Testing of Bioengineered Biological Heart Valves</title><author>Buse, Eric E. ; Hilbert, Stephen L. ; Hopkins, Richard A. ; Converse, Gabriel L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-461558408a42760234eca2a3d84a7a8ebeb7e37db73a61770fdc94b3843e7de53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Biaxial loads</topic><topic>Bioengineering</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Bioprosthesis</topic><topic>Cardiology</topic><topic>Conditioning</topic><topic>Crosslinking</topic><topic>Engineering</topic><topic>Equipment Failure Analysis - methods</topic><topic>Glutaraldehyde</topic><topic>Heart</topic><topic>Heart Valve Prosthesis</topic><topic>Heart valves</topic><topic>Hydrodynamics</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Pressure gradients</topic><topic>Reproduction (copying)</topic><topic>Scaffolds</topic><topic>Swine</topic><topic>Tissue Engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buse, Eric E.</creatorcontrib><creatorcontrib>Hilbert, Stephen L.</creatorcontrib><creatorcontrib>Hopkins, Richard A.</creatorcontrib><creatorcontrib>Converse, Gabriel L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cardiovascular engineering and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buse, Eric E.</au><au>Hilbert, Stephen L.</au><au>Hopkins, Richard A.</au><au>Converse, Gabriel L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pulse Duplicator Hydrodynamic Testing of Bioengineered Biological Heart Valves</atitle><jtitle>Cardiovascular engineering and technology</jtitle><stitle>Cardiovasc Eng Tech</stitle><addtitle>Cardiovasc Eng Technol</addtitle><date>2016-12-01</date><risdate>2016</risdate><volume>7</volume><issue>4</issue><spage>352</spage><epage>362</epage><pages>352-362</pages><issn>1869-408X</issn><eissn>1869-4098</eissn><abstract>There are many heart valve replacements currently available on the market; however, these devices are not ideal for pediatric patients with congenital heart valve defects. Decellularized valve substitutes offer potential for improved clinical outcomes and require pre-clinical testing guidelines and testing systems suitable for non-crosslinked, biological heart valves. The objective of this study was to assess the hydrodynamic performance of intact, bioengineered pulmonary valves using a custom pulse duplicator capable of testing intact biological valved conduits. The mechanical behavior of valve associated sinus and arterial tissue was also evaluated under biaxial loading. Cryopreserved, decellularized, extracellular matrix (ECM) conditioned and glutaraldehyde fixed valves showed reduced pressure gradients and increased effective orifice area for decellularized and ECM conditioned valves. ECM conditioning resulted in increased elastic modulus but decreased stretch in circumferential and longitudinal directions under biaxial loading. Overall, decellularization and ECM conditioning did not compromise the scaffolds, which exhibited satisfactory bench top performance.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>27443841</pmid><doi>10.1007/s13239-016-0275-9</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1869-408X |
ispartof | Cardiovascular engineering and technology, 2016-12, Vol.7 (4), p.352-362 |
issn | 1869-408X 1869-4098 |
language | eng |
recordid | cdi_proquest_miscellaneous_1826731087 |
source | Springer Nature |
subjects | Animals Biaxial loads Bioengineering Biomedical Engineering and Bioengineering Biomedicine Bioprosthesis Cardiology Conditioning Crosslinking Engineering Equipment Failure Analysis - methods Glutaraldehyde Heart Heart Valve Prosthesis Heart valves Hydrodynamics Mechanical properties Modulus of elasticity Pressure gradients Reproduction (copying) Scaffolds Swine Tissue Engineering |
title | Pulse Duplicator Hydrodynamic Testing of Bioengineered Biological Heart Valves |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T01%3A01%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pulse%20Duplicator%20Hydrodynamic%20Testing%20of%20Bioengineered%20Biological%20Heart%20Valves&rft.jtitle=Cardiovascular%20engineering%20and%20technology&rft.au=Buse,%20Eric%20E.&rft.date=2016-12-01&rft.volume=7&rft.issue=4&rft.spage=352&rft.epage=362&rft.pages=352-362&rft.issn=1869-408X&rft.eissn=1869-4098&rft_id=info:doi/10.1007/s13239-016-0275-9&rft_dat=%3Cproquest_cross%3E1880828024%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-461558408a42760234eca2a3d84a7a8ebeb7e37db73a61770fdc94b3843e7de53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1880828024&rft_id=info:pmid/27443841&rfr_iscdi=true |