Loading…

Pulse Duplicator Hydrodynamic Testing of Bioengineered Biological Heart Valves

There are many heart valve replacements currently available on the market; however, these devices are not ideal for pediatric patients with congenital heart valve defects. Decellularized valve substitutes offer potential for improved clinical outcomes and require pre-clinical testing guidelines and...

Full description

Saved in:
Bibliographic Details
Published in:Cardiovascular engineering and technology 2016-12, Vol.7 (4), p.352-362
Main Authors: Buse, Eric E., Hilbert, Stephen L., Hopkins, Richard A., Converse, Gabriel L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c372t-461558408a42760234eca2a3d84a7a8ebeb7e37db73a61770fdc94b3843e7de53
cites cdi_FETCH-LOGICAL-c372t-461558408a42760234eca2a3d84a7a8ebeb7e37db73a61770fdc94b3843e7de53
container_end_page 362
container_issue 4
container_start_page 352
container_title Cardiovascular engineering and technology
container_volume 7
creator Buse, Eric E.
Hilbert, Stephen L.
Hopkins, Richard A.
Converse, Gabriel L.
description There are many heart valve replacements currently available on the market; however, these devices are not ideal for pediatric patients with congenital heart valve defects. Decellularized valve substitutes offer potential for improved clinical outcomes and require pre-clinical testing guidelines and testing systems suitable for non-crosslinked, biological heart valves. The objective of this study was to assess the hydrodynamic performance of intact, bioengineered pulmonary valves using a custom pulse duplicator capable of testing intact biological valved conduits. The mechanical behavior of valve associated sinus and arterial tissue was also evaluated under biaxial loading. Cryopreserved, decellularized, extracellular matrix (ECM) conditioned and glutaraldehyde fixed valves showed reduced pressure gradients and increased effective orifice area for decellularized and ECM conditioned valves. ECM conditioning resulted in increased elastic modulus but decreased stretch in circumferential and longitudinal directions under biaxial loading. Overall, decellularization and ECM conditioning did not compromise the scaffolds, which exhibited satisfactory bench top performance.
doi_str_mv 10.1007/s13239-016-0275-9
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1826731087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880828024</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-461558408a42760234eca2a3d84a7a8ebeb7e37db73a61770fdc94b3843e7de53</originalsourceid><addsrcrecordid>eNp1kF1LwzAYhYMobsz9AG-k4I031Xy1SS91fkwQ9WKKdyFt3paOrplJK-zfm9E5RDA3b8L7nJPDQeiU4EuCsbjyhFGWxZikMaYiibMDNCYyzWKOM3m4v8uPEZp6v8ThMJphTo_RiArOmeRkjJ5f-8ZDdNuvm7rQnXXRfGOcNZtWr-oiWoDv6raKbBnd1Bbaqm4BHJjtq7FVkDTRHLTronfdfIE_QUelDobT3Zygt_u7xWweP708PM6un-KCCdrFPCVJIkM4zalIMWUcCk01M5JroSXkkAtgwuSC6ZQIgUtTZDwPkRkIAwmboIvBd-3sZx9CqlXtC2ga3YLtvSKSpoIRLEVAz_-gS9u7NqQLlMSSSkx5oMhAFc5676BUa1evtNsogtW2bzX0rULfatu3yoLmbOfc5yswe8VPuwGgA-DDqq3A_fr6X9dvnziJig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880828024</pqid></control><display><type>article</type><title>Pulse Duplicator Hydrodynamic Testing of Bioengineered Biological Heart Valves</title><source>Springer Nature</source><creator>Buse, Eric E. ; Hilbert, Stephen L. ; Hopkins, Richard A. ; Converse, Gabriel L.</creator><creatorcontrib>Buse, Eric E. ; Hilbert, Stephen L. ; Hopkins, Richard A. ; Converse, Gabriel L.</creatorcontrib><description>There are many heart valve replacements currently available on the market; however, these devices are not ideal for pediatric patients with congenital heart valve defects. Decellularized valve substitutes offer potential for improved clinical outcomes and require pre-clinical testing guidelines and testing systems suitable for non-crosslinked, biological heart valves. The objective of this study was to assess the hydrodynamic performance of intact, bioengineered pulmonary valves using a custom pulse duplicator capable of testing intact biological valved conduits. The mechanical behavior of valve associated sinus and arterial tissue was also evaluated under biaxial loading. Cryopreserved, decellularized, extracellular matrix (ECM) conditioned and glutaraldehyde fixed valves showed reduced pressure gradients and increased effective orifice area for decellularized and ECM conditioned valves. ECM conditioning resulted in increased elastic modulus but decreased stretch in circumferential and longitudinal directions under biaxial loading. Overall, decellularization and ECM conditioning did not compromise the scaffolds, which exhibited satisfactory bench top performance.</description><identifier>ISSN: 1869-408X</identifier><identifier>EISSN: 1869-4098</identifier><identifier>DOI: 10.1007/s13239-016-0275-9</identifier><identifier>PMID: 27443841</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Animals ; Biaxial loads ; Bioengineering ; Biomedical Engineering and Bioengineering ; Biomedicine ; Bioprosthesis ; Cardiology ; Conditioning ; Crosslinking ; Engineering ; Equipment Failure Analysis - methods ; Glutaraldehyde ; Heart ; Heart Valve Prosthesis ; Heart valves ; Hydrodynamics ; Mechanical properties ; Modulus of elasticity ; Pressure gradients ; Reproduction (copying) ; Scaffolds ; Swine ; Tissue Engineering</subject><ispartof>Cardiovascular engineering and technology, 2016-12, Vol.7 (4), p.352-362</ispartof><rights>Biomedical Engineering Society 2016</rights><rights>Copyright Springer Science &amp; Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-461558408a42760234eca2a3d84a7a8ebeb7e37db73a61770fdc94b3843e7de53</citedby><cites>FETCH-LOGICAL-c372t-461558408a42760234eca2a3d84a7a8ebeb7e37db73a61770fdc94b3843e7de53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27443841$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Buse, Eric E.</creatorcontrib><creatorcontrib>Hilbert, Stephen L.</creatorcontrib><creatorcontrib>Hopkins, Richard A.</creatorcontrib><creatorcontrib>Converse, Gabriel L.</creatorcontrib><title>Pulse Duplicator Hydrodynamic Testing of Bioengineered Biological Heart Valves</title><title>Cardiovascular engineering and technology</title><addtitle>Cardiovasc Eng Tech</addtitle><addtitle>Cardiovasc Eng Technol</addtitle><description>There are many heart valve replacements currently available on the market; however, these devices are not ideal for pediatric patients with congenital heart valve defects. Decellularized valve substitutes offer potential for improved clinical outcomes and require pre-clinical testing guidelines and testing systems suitable for non-crosslinked, biological heart valves. The objective of this study was to assess the hydrodynamic performance of intact, bioengineered pulmonary valves using a custom pulse duplicator capable of testing intact biological valved conduits. The mechanical behavior of valve associated sinus and arterial tissue was also evaluated under biaxial loading. Cryopreserved, decellularized, extracellular matrix (ECM) conditioned and glutaraldehyde fixed valves showed reduced pressure gradients and increased effective orifice area for decellularized and ECM conditioned valves. ECM conditioning resulted in increased elastic modulus but decreased stretch in circumferential and longitudinal directions under biaxial loading. Overall, decellularization and ECM conditioning did not compromise the scaffolds, which exhibited satisfactory bench top performance.</description><subject>Animals</subject><subject>Biaxial loads</subject><subject>Bioengineering</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Bioprosthesis</subject><subject>Cardiology</subject><subject>Conditioning</subject><subject>Crosslinking</subject><subject>Engineering</subject><subject>Equipment Failure Analysis - methods</subject><subject>Glutaraldehyde</subject><subject>Heart</subject><subject>Heart Valve Prosthesis</subject><subject>Heart valves</subject><subject>Hydrodynamics</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Pressure gradients</subject><subject>Reproduction (copying)</subject><subject>Scaffolds</subject><subject>Swine</subject><subject>Tissue Engineering</subject><issn>1869-408X</issn><issn>1869-4098</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kF1LwzAYhYMobsz9AG-k4I031Xy1SS91fkwQ9WKKdyFt3paOrplJK-zfm9E5RDA3b8L7nJPDQeiU4EuCsbjyhFGWxZikMaYiibMDNCYyzWKOM3m4v8uPEZp6v8ThMJphTo_RiArOmeRkjJ5f-8ZDdNuvm7rQnXXRfGOcNZtWr-oiWoDv6raKbBnd1Bbaqm4BHJjtq7FVkDTRHLTronfdfIE_QUelDobT3Zygt_u7xWweP708PM6un-KCCdrFPCVJIkM4zalIMWUcCk01M5JroSXkkAtgwuSC6ZQIgUtTZDwPkRkIAwmboIvBd-3sZx9CqlXtC2ga3YLtvSKSpoIRLEVAz_-gS9u7NqQLlMSSSkx5oMhAFc5676BUa1evtNsogtW2bzX0rULfatu3yoLmbOfc5yswe8VPuwGgA-DDqq3A_fr6X9dvnziJig</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Buse, Eric E.</creator><creator>Hilbert, Stephen L.</creator><creator>Hopkins, Richard A.</creator><creator>Converse, Gabriel L.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20161201</creationdate><title>Pulse Duplicator Hydrodynamic Testing of Bioengineered Biological Heart Valves</title><author>Buse, Eric E. ; Hilbert, Stephen L. ; Hopkins, Richard A. ; Converse, Gabriel L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-461558408a42760234eca2a3d84a7a8ebeb7e37db73a61770fdc94b3843e7de53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Biaxial loads</topic><topic>Bioengineering</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Bioprosthesis</topic><topic>Cardiology</topic><topic>Conditioning</topic><topic>Crosslinking</topic><topic>Engineering</topic><topic>Equipment Failure Analysis - methods</topic><topic>Glutaraldehyde</topic><topic>Heart</topic><topic>Heart Valve Prosthesis</topic><topic>Heart valves</topic><topic>Hydrodynamics</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Pressure gradients</topic><topic>Reproduction (copying)</topic><topic>Scaffolds</topic><topic>Swine</topic><topic>Tissue Engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buse, Eric E.</creatorcontrib><creatorcontrib>Hilbert, Stephen L.</creatorcontrib><creatorcontrib>Hopkins, Richard A.</creatorcontrib><creatorcontrib>Converse, Gabriel L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cardiovascular engineering and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buse, Eric E.</au><au>Hilbert, Stephen L.</au><au>Hopkins, Richard A.</au><au>Converse, Gabriel L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pulse Duplicator Hydrodynamic Testing of Bioengineered Biological Heart Valves</atitle><jtitle>Cardiovascular engineering and technology</jtitle><stitle>Cardiovasc Eng Tech</stitle><addtitle>Cardiovasc Eng Technol</addtitle><date>2016-12-01</date><risdate>2016</risdate><volume>7</volume><issue>4</issue><spage>352</spage><epage>362</epage><pages>352-362</pages><issn>1869-408X</issn><eissn>1869-4098</eissn><abstract>There are many heart valve replacements currently available on the market; however, these devices are not ideal for pediatric patients with congenital heart valve defects. Decellularized valve substitutes offer potential for improved clinical outcomes and require pre-clinical testing guidelines and testing systems suitable for non-crosslinked, biological heart valves. The objective of this study was to assess the hydrodynamic performance of intact, bioengineered pulmonary valves using a custom pulse duplicator capable of testing intact biological valved conduits. The mechanical behavior of valve associated sinus and arterial tissue was also evaluated under biaxial loading. Cryopreserved, decellularized, extracellular matrix (ECM) conditioned and glutaraldehyde fixed valves showed reduced pressure gradients and increased effective orifice area for decellularized and ECM conditioned valves. ECM conditioning resulted in increased elastic modulus but decreased stretch in circumferential and longitudinal directions under biaxial loading. Overall, decellularization and ECM conditioning did not compromise the scaffolds, which exhibited satisfactory bench top performance.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>27443841</pmid><doi>10.1007/s13239-016-0275-9</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1869-408X
ispartof Cardiovascular engineering and technology, 2016-12, Vol.7 (4), p.352-362
issn 1869-408X
1869-4098
language eng
recordid cdi_proquest_miscellaneous_1826731087
source Springer Nature
subjects Animals
Biaxial loads
Bioengineering
Biomedical Engineering and Bioengineering
Biomedicine
Bioprosthesis
Cardiology
Conditioning
Crosslinking
Engineering
Equipment Failure Analysis - methods
Glutaraldehyde
Heart
Heart Valve Prosthesis
Heart valves
Hydrodynamics
Mechanical properties
Modulus of elasticity
Pressure gradients
Reproduction (copying)
Scaffolds
Swine
Tissue Engineering
title Pulse Duplicator Hydrodynamic Testing of Bioengineered Biological Heart Valves
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T01%3A01%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pulse%20Duplicator%20Hydrodynamic%20Testing%20of%20Bioengineered%20Biological%20Heart%20Valves&rft.jtitle=Cardiovascular%20engineering%20and%20technology&rft.au=Buse,%20Eric%20E.&rft.date=2016-12-01&rft.volume=7&rft.issue=4&rft.spage=352&rft.epage=362&rft.pages=352-362&rft.issn=1869-408X&rft.eissn=1869-4098&rft_id=info:doi/10.1007/s13239-016-0275-9&rft_dat=%3Cproquest_cross%3E1880828024%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-461558408a42760234eca2a3d84a7a8ebeb7e37db73a61770fdc94b3843e7de53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1880828024&rft_id=info:pmid/27443841&rfr_iscdi=true