Loading…
Volatile organic compounds (VOCs) drive nutrient foraging in the clonal woodland strawberry, Fragaria vesca
Background and Aims It was previously demonstrated that stolons of Fragaria vesca respond to patches of varying nutrient quality; however, the mechanism of patch-detection remained unknown. Here we provide support for a process by which F. vesca perceives nutrient-rich patches, consistent with nutri...
Saved in:
Published in: | Plant and soil 2016-10, Vol.407 (1/2), p.261-274 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background and Aims It was previously demonstrated that stolons of Fragaria vesca respond to patches of varying nutrient quality; however, the mechanism of patch-detection remained unknown. Here we provide support for a process by which F. vesca perceives nutrient-rich patches, consistent with nutrient foraging prior to rooting. Methods Volatile organic compounds (VOCs) emitted from unsterilized and sterilized field substrates were collected and analyzed by stir-bar headspace extraction gas chromatography-mass spectrometry using a method modified for soil and litter systems. Selected compounds were chosen to represent unsterilized and sterilized field substrates. These synthetic volatile compound mixtures were then applied to neutral substrate to test the ability of F. vesca to choose between unsterilized versus sterilized substrates. Results Primary stolons exhibited chemotropism towards unsterilized (natural) substrates and grew away from the sterilized volatile substrates when the alternate choice was a negative control. We conclude that the presence of carboxylic acids tends to stimulate stolon elongation and chemotropism while aldehydes, ketones and monoterpenes tend to suppress it. Conclusions We provide evidence that developing stolons of F. vesca forage for nutrient-rich patches via volatile cues similar to those emitted from the soil through microflora activity. |
---|---|
ISSN: | 0032-079X 1573-5036 |
DOI: | 10.1007/s11104-016-2934-x |