Loading…

A Simple Analytical Solution for the Boussinesq One-Dimensional Groundwater Flow Equation

An approximate analytical solution to the Boussinesq equation is presented here. Uniform initial conditions and a step function increase of piezometric head on the boundary are assumed. The one‐dimensional problem is reduced to an ordinary differential equation through Boltzmann's transformatio...

Full description

Saved in:
Bibliographic Details
Published in:Water resources research 1984-01, Vol.20 (1), p.24-28
Main Authors: Tolikas, Panagiotis K., Sidiropoulos, Epaminondas G., Tzimopoulos, Christos D.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An approximate analytical solution to the Boussinesq equation is presented here. Uniform initial conditions and a step function increase of piezometric head on the boundary are assumed. The one‐dimensional problem is reduced to an ordinary differential equation through Boltzmann's transformation, and a technique exploiting some basic characteristics of the exact solution leads to an approximate polynomial solution of the problem. The technique presented here can also be applied to one‐dimensional nonlinear diffusion problems. A numerical procedure incorporating some of the analytical characteristics of the exact solution is presented. A discussion concludes the paper.
ISSN:0043-1397
1944-7973
DOI:10.1029/WR020i001p00024