Loading…
A new two grid variational multiscale method for steady-state natural convection problem
A two‐grid variational multiscale method based on two local Gauss integrations for solving the stationary natural convection problem is presented in this article. A significant feature of the method is that we solve the natural convection problem on a coarse mesh using finite element variational mul...
Saved in:
Published in: | Mathematical methods in the applied sciences 2016-09, Vol.39 (14), p.4007-4024 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A two‐grid variational multiscale method based on two local Gauss integrations for solving the stationary natural convection problem is presented in this article. A significant feature of the method is that we solve the natural convection problem on a coarse mesh using finite element variational multiscale method based on two local Gauss integrations firstly, and then find a fine grid solution by solving a linearized problem on a fine grid. In the computation, we introduce two local Gauss integrations as a stabilizing term to replace the projection operator without adding other variables. The stability estimates and convergence analysis of the new method are derived. Ample numerical experiments are performed to validate the theoretical predictions and demonstrate the efficiency of the new method. Copyright © 2016 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0170-4214 1099-1476 |
DOI: | 10.1002/mma.3843 |