Loading…
The Lyapunov exponent of holomorphic maps
We prove that for any polynomial map with a single critical point its lower Lyapunov exponent at the critical value is negative if and only if the map has an attracting cycle. Similar statement holds for the exponential maps and some other complex dynamical systems. We prove further that for the uni...
Saved in:
Published in: | Inventiones mathematicae 2016-08, Vol.205 (2), p.363-382 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We prove that for any polynomial map with a single critical point its lower Lyapunov exponent at the critical value is negative if and only if the map has an attracting cycle. Similar statement holds for the exponential maps and some other complex dynamical systems. We prove further that for the unicritical polynomials with positive area Julia sets almost every point of the Julia set has zero Lyapunov exponent. Part of this statement generalizes as follows: every point with positive upper Lyapunov exponent in the Julia set of an arbitrary polynomial is not a Lebegue density point. |
---|---|
ISSN: | 0020-9910 1432-1297 |
DOI: | 10.1007/s00222-015-0637-1 |