Loading…

The Lyapunov exponent of holomorphic maps

We prove that for any polynomial map with a single critical point its lower Lyapunov exponent at the critical value is negative if and only if the map has an attracting cycle. Similar statement holds for the exponential maps and some other complex dynamical systems. We prove further that for the uni...

Full description

Saved in:
Bibliographic Details
Published in:Inventiones mathematicae 2016-08, Vol.205 (2), p.363-382
Main Authors: Levin, Genadi, Przytycki, Feliks, Shen, Weixiao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c321t-9ae4d5184af44f6af91a36da634767f9a2ff813f668e197d439438085989e4653
cites cdi_FETCH-LOGICAL-c321t-9ae4d5184af44f6af91a36da634767f9a2ff813f668e197d439438085989e4653
container_end_page 382
container_issue 2
container_start_page 363
container_title Inventiones mathematicae
container_volume 205
creator Levin, Genadi
Przytycki, Feliks
Shen, Weixiao
description We prove that for any polynomial map with a single critical point its lower Lyapunov exponent at the critical value is negative if and only if the map has an attracting cycle. Similar statement holds for the exponential maps and some other complex dynamical systems. We prove further that for the unicritical polynomials with positive area Julia sets almost every point of the Julia set has zero Lyapunov exponent. Part of this statement generalizes as follows: every point with positive upper Lyapunov exponent in the Julia set of an arbitrary polynomial is not a Lebegue density point.
doi_str_mv 10.1007/s00222-015-0637-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835575965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835575965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-9ae4d5184af44f6af91a36da634767f9a2ff813f668e197d439438085989e4653</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhS0EEqXwA9gywmC412-PqOIlVWIps2WlNm2VxMFuEP33pISZ6Q7nfEe6HyHXCHcIoO8LAGOMAkoKimuKJ2SGgjOKzOpTMhtjoNYinJOLUnYAY6jZjNyuNqFaHnw_dOmrCt996kK3r1KsNqlJbcr9ZltXre_LJTmLvinh6u_OyfvT42rxQpdvz6-LhyWtOcM9tT6ItUQjfBQiKh8teq7WXnGhlY7WsxgN8qiUCWj1WnAruAEjrbFBKMnn5Gba7XP6HELZu3Zb6tA0vgtpKA4Nl1JL-1vFqVrnVEoO0fV52_p8cAjuqMVNWtyoxR21OBwZNjFl7HYfIbtdGnI3fvQP9ANMWmMI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835575965</pqid></control><display><type>article</type><title>The Lyapunov exponent of holomorphic maps</title><source>Springer Nature</source><creator>Levin, Genadi ; Przytycki, Feliks ; Shen, Weixiao</creator><creatorcontrib>Levin, Genadi ; Przytycki, Feliks ; Shen, Weixiao</creatorcontrib><description>We prove that for any polynomial map with a single critical point its lower Lyapunov exponent at the critical value is negative if and only if the map has an attracting cycle. Similar statement holds for the exponential maps and some other complex dynamical systems. We prove further that for the unicritical polynomials with positive area Julia sets almost every point of the Julia set has zero Lyapunov exponent. Part of this statement generalizes as follows: every point with positive upper Lyapunov exponent in the Julia set of an arbitrary polynomial is not a Lebegue density point.</description><identifier>ISSN: 0020-9910</identifier><identifier>EISSN: 1432-1297</identifier><identifier>DOI: 10.1007/s00222-015-0637-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Critical point ; Density ; Dynamical systems ; Lyapunov exponents ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Polynomials</subject><ispartof>Inventiones mathematicae, 2016-08, Vol.205 (2), p.363-382</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-9ae4d5184af44f6af91a36da634767f9a2ff813f668e197d439438085989e4653</citedby><cites>FETCH-LOGICAL-c321t-9ae4d5184af44f6af91a36da634767f9a2ff813f668e197d439438085989e4653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Levin, Genadi</creatorcontrib><creatorcontrib>Przytycki, Feliks</creatorcontrib><creatorcontrib>Shen, Weixiao</creatorcontrib><title>The Lyapunov exponent of holomorphic maps</title><title>Inventiones mathematicae</title><addtitle>Invent. math</addtitle><description>We prove that for any polynomial map with a single critical point its lower Lyapunov exponent at the critical value is negative if and only if the map has an attracting cycle. Similar statement holds for the exponential maps and some other complex dynamical systems. We prove further that for the unicritical polynomials with positive area Julia sets almost every point of the Julia set has zero Lyapunov exponent. Part of this statement generalizes as follows: every point with positive upper Lyapunov exponent in the Julia set of an arbitrary polynomial is not a Lebegue density point.</description><subject>Critical point</subject><subject>Density</subject><subject>Dynamical systems</subject><subject>Lyapunov exponents</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Polynomials</subject><issn>0020-9910</issn><issn>1432-1297</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAUhS0EEqXwA9gywmC412-PqOIlVWIps2WlNm2VxMFuEP33pISZ6Q7nfEe6HyHXCHcIoO8LAGOMAkoKimuKJ2SGgjOKzOpTMhtjoNYinJOLUnYAY6jZjNyuNqFaHnw_dOmrCt996kK3r1KsNqlJbcr9ZltXre_LJTmLvinh6u_OyfvT42rxQpdvz6-LhyWtOcM9tT6ItUQjfBQiKh8teq7WXnGhlY7WsxgN8qiUCWj1WnAruAEjrbFBKMnn5Gba7XP6HELZu3Zb6tA0vgtpKA4Nl1JL-1vFqVrnVEoO0fV52_p8cAjuqMVNWtyoxR21OBwZNjFl7HYfIbtdGnI3fvQP9ANMWmMI</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Levin, Genadi</creator><creator>Przytycki, Feliks</creator><creator>Shen, Weixiao</creator><general>Springer Berlin Heidelberg</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160801</creationdate><title>The Lyapunov exponent of holomorphic maps</title><author>Levin, Genadi ; Przytycki, Feliks ; Shen, Weixiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-9ae4d5184af44f6af91a36da634767f9a2ff813f668e197d439438085989e4653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Critical point</topic><topic>Density</topic><topic>Dynamical systems</topic><topic>Lyapunov exponents</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Levin, Genadi</creatorcontrib><creatorcontrib>Przytycki, Feliks</creatorcontrib><creatorcontrib>Shen, Weixiao</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Inventiones mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Levin, Genadi</au><au>Przytycki, Feliks</au><au>Shen, Weixiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Lyapunov exponent of holomorphic maps</atitle><jtitle>Inventiones mathematicae</jtitle><stitle>Invent. math</stitle><date>2016-08-01</date><risdate>2016</risdate><volume>205</volume><issue>2</issue><spage>363</spage><epage>382</epage><pages>363-382</pages><issn>0020-9910</issn><eissn>1432-1297</eissn><abstract>We prove that for any polynomial map with a single critical point its lower Lyapunov exponent at the critical value is negative if and only if the map has an attracting cycle. Similar statement holds for the exponential maps and some other complex dynamical systems. We prove further that for the unicritical polynomials with positive area Julia sets almost every point of the Julia set has zero Lyapunov exponent. Part of this statement generalizes as follows: every point with positive upper Lyapunov exponent in the Julia set of an arbitrary polynomial is not a Lebegue density point.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00222-015-0637-1</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-9910
ispartof Inventiones mathematicae, 2016-08, Vol.205 (2), p.363-382
issn 0020-9910
1432-1297
language eng
recordid cdi_proquest_miscellaneous_1835575965
source Springer Nature
subjects Critical point
Density
Dynamical systems
Lyapunov exponents
Mathematical analysis
Mathematics
Mathematics and Statistics
Polynomials
title The Lyapunov exponent of holomorphic maps
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A22%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Lyapunov%20exponent%20of%20holomorphic%20maps&rft.jtitle=Inventiones%20mathematicae&rft.au=Levin,%20Genadi&rft.date=2016-08-01&rft.volume=205&rft.issue=2&rft.spage=363&rft.epage=382&rft.pages=363-382&rft.issn=0020-9910&rft.eissn=1432-1297&rft_id=info:doi/10.1007/s00222-015-0637-1&rft_dat=%3Cproquest_cross%3E1835575965%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c321t-9ae4d5184af44f6af91a36da634767f9a2ff813f668e197d439438085989e4653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1835575965&rft_id=info:pmid/&rfr_iscdi=true