Loading…
The Lyapunov exponent of holomorphic maps
We prove that for any polynomial map with a single critical point its lower Lyapunov exponent at the critical value is negative if and only if the map has an attracting cycle. Similar statement holds for the exponential maps and some other complex dynamical systems. We prove further that for the uni...
Saved in:
Published in: | Inventiones mathematicae 2016-08, Vol.205 (2), p.363-382 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c321t-9ae4d5184af44f6af91a36da634767f9a2ff813f668e197d439438085989e4653 |
---|---|
cites | cdi_FETCH-LOGICAL-c321t-9ae4d5184af44f6af91a36da634767f9a2ff813f668e197d439438085989e4653 |
container_end_page | 382 |
container_issue | 2 |
container_start_page | 363 |
container_title | Inventiones mathematicae |
container_volume | 205 |
creator | Levin, Genadi Przytycki, Feliks Shen, Weixiao |
description | We prove that for any polynomial map with a single critical point its lower Lyapunov exponent at the critical value is negative if and only if the map has an attracting cycle. Similar statement holds for the exponential maps and some other complex dynamical systems. We prove further that for the unicritical polynomials with positive area Julia sets almost every point of the Julia set has zero Lyapunov exponent. Part of this statement generalizes as follows: every point with positive upper Lyapunov exponent in the Julia set of an arbitrary polynomial is not a Lebegue density point. |
doi_str_mv | 10.1007/s00222-015-0637-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835575965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835575965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-9ae4d5184af44f6af91a36da634767f9a2ff813f668e197d439438085989e4653</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhS0EEqXwA9gywmC412-PqOIlVWIps2WlNm2VxMFuEP33pISZ6Q7nfEe6HyHXCHcIoO8LAGOMAkoKimuKJ2SGgjOKzOpTMhtjoNYinJOLUnYAY6jZjNyuNqFaHnw_dOmrCt996kK3r1KsNqlJbcr9ZltXre_LJTmLvinh6u_OyfvT42rxQpdvz6-LhyWtOcM9tT6ItUQjfBQiKh8teq7WXnGhlY7WsxgN8qiUCWj1WnAruAEjrbFBKMnn5Gba7XP6HELZu3Zb6tA0vgtpKA4Nl1JL-1vFqVrnVEoO0fV52_p8cAjuqMVNWtyoxR21OBwZNjFl7HYfIbtdGnI3fvQP9ANMWmMI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835575965</pqid></control><display><type>article</type><title>The Lyapunov exponent of holomorphic maps</title><source>Springer Nature</source><creator>Levin, Genadi ; Przytycki, Feliks ; Shen, Weixiao</creator><creatorcontrib>Levin, Genadi ; Przytycki, Feliks ; Shen, Weixiao</creatorcontrib><description>We prove that for any polynomial map with a single critical point its lower Lyapunov exponent at the critical value is negative if and only if the map has an attracting cycle. Similar statement holds for the exponential maps and some other complex dynamical systems. We prove further that for the unicritical polynomials with positive area Julia sets almost every point of the Julia set has zero Lyapunov exponent. Part of this statement generalizes as follows: every point with positive upper Lyapunov exponent in the Julia set of an arbitrary polynomial is not a Lebegue density point.</description><identifier>ISSN: 0020-9910</identifier><identifier>EISSN: 1432-1297</identifier><identifier>DOI: 10.1007/s00222-015-0637-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Critical point ; Density ; Dynamical systems ; Lyapunov exponents ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Polynomials</subject><ispartof>Inventiones mathematicae, 2016-08, Vol.205 (2), p.363-382</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-9ae4d5184af44f6af91a36da634767f9a2ff813f668e197d439438085989e4653</citedby><cites>FETCH-LOGICAL-c321t-9ae4d5184af44f6af91a36da634767f9a2ff813f668e197d439438085989e4653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Levin, Genadi</creatorcontrib><creatorcontrib>Przytycki, Feliks</creatorcontrib><creatorcontrib>Shen, Weixiao</creatorcontrib><title>The Lyapunov exponent of holomorphic maps</title><title>Inventiones mathematicae</title><addtitle>Invent. math</addtitle><description>We prove that for any polynomial map with a single critical point its lower Lyapunov exponent at the critical value is negative if and only if the map has an attracting cycle. Similar statement holds for the exponential maps and some other complex dynamical systems. We prove further that for the unicritical polynomials with positive area Julia sets almost every point of the Julia set has zero Lyapunov exponent. Part of this statement generalizes as follows: every point with positive upper Lyapunov exponent in the Julia set of an arbitrary polynomial is not a Lebegue density point.</description><subject>Critical point</subject><subject>Density</subject><subject>Dynamical systems</subject><subject>Lyapunov exponents</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Polynomials</subject><issn>0020-9910</issn><issn>1432-1297</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAUhS0EEqXwA9gywmC412-PqOIlVWIps2WlNm2VxMFuEP33pISZ6Q7nfEe6HyHXCHcIoO8LAGOMAkoKimuKJ2SGgjOKzOpTMhtjoNYinJOLUnYAY6jZjNyuNqFaHnw_dOmrCt996kK3r1KsNqlJbcr9ZltXre_LJTmLvinh6u_OyfvT42rxQpdvz6-LhyWtOcM9tT6ItUQjfBQiKh8teq7WXnGhlY7WsxgN8qiUCWj1WnAruAEjrbFBKMnn5Gba7XP6HELZu3Zb6tA0vgtpKA4Nl1JL-1vFqVrnVEoO0fV52_p8cAjuqMVNWtyoxR21OBwZNjFl7HYfIbtdGnI3fvQP9ANMWmMI</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Levin, Genadi</creator><creator>Przytycki, Feliks</creator><creator>Shen, Weixiao</creator><general>Springer Berlin Heidelberg</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160801</creationdate><title>The Lyapunov exponent of holomorphic maps</title><author>Levin, Genadi ; Przytycki, Feliks ; Shen, Weixiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-9ae4d5184af44f6af91a36da634767f9a2ff813f668e197d439438085989e4653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Critical point</topic><topic>Density</topic><topic>Dynamical systems</topic><topic>Lyapunov exponents</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Levin, Genadi</creatorcontrib><creatorcontrib>Przytycki, Feliks</creatorcontrib><creatorcontrib>Shen, Weixiao</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Inventiones mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Levin, Genadi</au><au>Przytycki, Feliks</au><au>Shen, Weixiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Lyapunov exponent of holomorphic maps</atitle><jtitle>Inventiones mathematicae</jtitle><stitle>Invent. math</stitle><date>2016-08-01</date><risdate>2016</risdate><volume>205</volume><issue>2</issue><spage>363</spage><epage>382</epage><pages>363-382</pages><issn>0020-9910</issn><eissn>1432-1297</eissn><abstract>We prove that for any polynomial map with a single critical point its lower Lyapunov exponent at the critical value is negative if and only if the map has an attracting cycle. Similar statement holds for the exponential maps and some other complex dynamical systems. We prove further that for the unicritical polynomials with positive area Julia sets almost every point of the Julia set has zero Lyapunov exponent. Part of this statement generalizes as follows: every point with positive upper Lyapunov exponent in the Julia set of an arbitrary polynomial is not a Lebegue density point.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00222-015-0637-1</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-9910 |
ispartof | Inventiones mathematicae, 2016-08, Vol.205 (2), p.363-382 |
issn | 0020-9910 1432-1297 |
language | eng |
recordid | cdi_proquest_miscellaneous_1835575965 |
source | Springer Nature |
subjects | Critical point Density Dynamical systems Lyapunov exponents Mathematical analysis Mathematics Mathematics and Statistics Polynomials |
title | The Lyapunov exponent of holomorphic maps |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A22%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Lyapunov%20exponent%20of%20holomorphic%20maps&rft.jtitle=Inventiones%20mathematicae&rft.au=Levin,%20Genadi&rft.date=2016-08-01&rft.volume=205&rft.issue=2&rft.spage=363&rft.epage=382&rft.pages=363-382&rft.issn=0020-9910&rft.eissn=1432-1297&rft_id=info:doi/10.1007/s00222-015-0637-1&rft_dat=%3Cproquest_cross%3E1835575965%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c321t-9ae4d5184af44f6af91a36da634767f9a2ff813f668e197d439438085989e4653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1835575965&rft_id=info:pmid/&rfr_iscdi=true |