Loading…

Evolutionary algorithms and elliptical copulas applied to continuous optimization problems

Estimation of Distribution Algorithms (EDAs) constitutes a class of evolutionary algorithms that can extract and exploit knowledge acquired throughout the optimization process. The most critical step in the EDAs is the estimation of the joint probability distribution associated to the variables from...

Full description

Saved in:
Bibliographic Details
Published in:Information sciences 2016-11, Vol.369, p.419-440
Main Authors: de Mello Junior, Harold Dias, Martí, Luis, Abs da Cruz, André V., Vellasco, Marley M.B. Rebuzzi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Estimation of Distribution Algorithms (EDAs) constitutes a class of evolutionary algorithms that can extract and exploit knowledge acquired throughout the optimization process. The most critical step in the EDAs is the estimation of the joint probability distribution associated to the variables from the most promising solutions determined by the evaluation function. Recently, a new approach to EDAs has been developed, based on copula theory, to improve the estimation of the joint probability distribution function. However, most copula-based EDAs still present two major drawbacks: focus on copulas with constant parameters, and premature convergence. This paper presents a new copula-based estimation of distribution algorithm for numerical optimization problems, named EDA based on Multivariate Elliptical Copulas (EDA-MEC). This model uses multivariate copulas to estimate the probability distribution for generating a population of individuals. The EDA-MEC differs from other copula-based EDAs in several aspects: the copula parameter is dynamically estimated, using dependence measures; it uses a variation of the learned probability distribution to generate individuals that help to avoid premature convergence; and uses a heuristic to reinitialize the population as an additional technique to preserve the diversity of solutions. The paper shows, by means of a set of parametric tests, that this approach improves the overall performance of the optimization process when compared with other copula-based EDAs and with other efficient heuristics such as the Covariance Matrix Adaptation Evolution Strategy (CMA-ES).
ISSN:0020-0255
1872-6291
DOI:10.1016/j.ins.2016.07.006