Loading…
GAMA/WiggleZ: the 1.4 GHz radio luminosity functions of high- and low-excitation radio galaxies and their redshift evolution to z = 0.75
We present radio active galactic nuclei (AGN) luminosity functions over the redshift range 0.005 < z < 0.75. The sample from which the luminosity functions are constructed is an optical spectroscopic survey of radio galaxies, identified from matched Faint Images of the Radio Sky at Twenty-cm s...
Saved in:
Published in: | Monthly notices of the Royal Astronomical Society 2016-07, Vol.460 (1), p.2-17 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present radio active galactic nuclei (AGN) luminosity functions over the redshift range 0.005 < z < 0.75. The sample from which the luminosity functions are constructed is an optical spectroscopic survey of radio galaxies, identified from matched Faint Images of the Radio Sky at Twenty-cm survey (FIRST) sources and Sloan Digital Sky Survey images. The radio AGN are separated into low-excitation radio galaxies (LERGs) and high-excitation radio galaxies (HERGs) using the optical spectra. We derive radio luminosity functions for LERGs and HERGs separately in the three redshift bins (0.005 < z < 0.3, 0.3 < z < 0.5 and 0.5 < z < 0.75). The radio luminosity functions can be well described by a double power law. Assuming this double power-law shape the LERG population displays little or no evolution over this redshift range evolving as
${\sim } (1+z)^{0.06^{+0.17}_{-0.18}}$
assuming pure density evolution or
${\sim } (1+z)^{0.46^{+0.22}_{-0.24}}$
assuming pure luminosity evolution. In contrast, the HERG population evolves more rapidly, best fitted by
${\sim } (1+z)^{2.93^{+0.46}_{-0.47}}$
assuming a double power-law shape and pure density evolution. If a pure luminosity model is assumed, the best-fitting HERG evolution is parametrized by
${\sim } (1+z)^{7.41^{+0.79}_{-1.33}}$
. The characteristic break in the radio luminosity function occurs at a significantly higher power (≳1 dex) for the HERG population in comparison to the LERGs. This is consistent with the two populations representing fundamentally different accretion modes. |
---|---|
ISSN: | 0035-8711 1365-2966 |
DOI: | 10.1093/mnras/stw910 |