Loading…
Stronger uncertainty relations for all incompatible observables
The Heisenberg-Robertson uncertainty relation expresses a limitation in the possible preparations of the system by giving a lower bound to the product of the variances of two observables in terms of their commutator. Notably, it does not capture the concept of incompatible observables because it can...
Saved in:
Published in: | Physical review letters 2014-12, Vol.113 (26), p.260401-260401, Article 260401 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Heisenberg-Robertson uncertainty relation expresses a limitation in the possible preparations of the system by giving a lower bound to the product of the variances of two observables in terms of their commutator. Notably, it does not capture the concept of incompatible observables because it can be trivial; i.e., the lower bound can be null even for two noncompatible observables. Here we give two stronger uncertainty relations, relating to the sum of variances, whose lower bound is guaranteed to be nontrivial whenever the two observables are incompatible on the state of the system. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.113.260401 |