Loading…

A Bi-Projection Neural Network for Solving Constrained Quadratic Optimization Problems

In this paper, a bi-projection neural network for solving a class of constrained quadratic optimization problems is proposed. It is proved that the proposed neural network is globally stable in the sense of Lyapunov, and the output trajectory of the proposed neural network will converge globally to...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transaction on neural networks and learning systems 2016-02, Vol.27 (2), p.214-224
Main Authors: Xia, Youshen, Wang, Jun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, a bi-projection neural network for solving a class of constrained quadratic optimization problems is proposed. It is proved that the proposed neural network is globally stable in the sense of Lyapunov, and the output trajectory of the proposed neural network will converge globally to an optimal solution. Compared with existing projection neural networks (PNNs), the proposed neural network has a very small model size owing to its bi-projection structure. Furthermore, an application to data fusion shows that the proposed neural network is very effective. Numerical results demonstrate that the proposed neural network is much faster than the existing PNNs.
ISSN:2162-237X
2162-2388
DOI:10.1109/TNNLS.2015.2500618