Loading…
Potential for brain accessibility and analysis of stability of selected flavonoids in relation to neuroprotection in vitro
Abstract Natural food sources constitute a promising source of new compounds with neuroprotective properties, once they have the ability to reach the brain. Our aim was to evaluate the brain accessibility of quercetin, epigallocatechin gallate (EGCG) and cyanidin-3-glucoside (C3G) in relation to the...
Saved in:
Published in: | Brain research 2016-11, Vol.1651, p.17-26 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract Natural food sources constitute a promising source of new compounds with neuroprotective properties, once they have the ability to reach the brain. Our aim was to evaluate the brain accessibility of quercetin, epigallocatechin gallate (EGCG) and cyanidin-3-glucoside (C3G) in relation to their neuroprotective capability. Primary cortical neuron cultures were exposed to oxidative insult in the absence and presence of the selected compounds, and neuroprotection was assessed through evaluation of apoptotic-like and necrotic-like cell death. The brain accessibility of selected compounds was assessed using an optimised human blood-brain barrier model. The blood-brain barrier model was crossed rapidly by EGCG and more slowly by C3G, but not by quercetin. EGCG protected against oxidation-induced neuronal necrotic-like cell death by ~40%, and apoptosis by ~30%. Both quercetin and C3G were less effective, since only the lowest quercetin concentration was protective, and C3G only prevented necrosis by ~37%. Quercetin, EGCG and C3G effectively inhibited α-synuclein fibrillation over the relevant timescale applied here. Overall, EGCG seems to be the most promising neuroprotective compound. Thus, inclusion of this polyphenol in the diet might provide an affordable means to reduce the impact of neurodegenerative diseases. |
---|---|
ISSN: | 0006-8993 1872-6240 |
DOI: | 10.1016/j.brainres.2016.09.020 |