Loading…
Extent of the Oxidative Side Reactions to Peptides and Proteins During the CuAAC Reaction
The copper-catalyzed azide–alkyne cycloaddition (CuAAC) reaction is a powerful tool for bioconjugation of biomolecules, particularly proteins and peptides. The major drawback limiting the use of the CuAAC reaction in biological systems is the copper-mediated formation of reactive oxygen species (ROS...
Saved in:
Published in: | Bioconjugate chemistry 2016-10, Vol.27 (10), p.2315-2322 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The copper-catalyzed azide–alkyne cycloaddition (CuAAC) reaction is a powerful tool for bioconjugation of biomolecules, particularly proteins and peptides. The major drawback limiting the use of the CuAAC reaction in biological systems is the copper-mediated formation of reactive oxygen species (ROS), leading to the oxidative degradation of proteins or peptides. From the studies on a limited number of proteins and peptides, it is known that, in general, the copper mediated oxidative damage is associated with the copper coordination environment and solvent accessibility. However, there is a lack of data to help estimate the extent of copper-mediated oxidation on a wide range of proteins and peptides. To begin to address this need, we quantitatively measured the degree of copper-mediated oxidation on libraries of 1200 tetrapeptides and a model protein (bovine serum albumin, BSA) using liquid chromatography mass spectrometry (LC-MS). The collected data will be useful to researchers planning to use the CuAAC reaction for bioconjugaton on peptides or proteins. |
---|---|
ISSN: | 1043-1802 1520-4812 |
DOI: | 10.1021/acs.bioconjchem.6b00267 |