Loading…

Physiological, biochemical, and proteome profiling reveals key pathways underlying the drought stress responses of Hippophae rhamnoides

The effects of drought on plant growth and development are occurring as a result of climate change and the growing scarcity of water resources. Hippophae rhamnoides has been exploited for soil and water conservation for many years. However, the outstanding drought‐resistance mechanisms possessed by...

Full description

Saved in:
Bibliographic Details
Published in:Proteomics (Weinheim) 2016-10, Vol.16 (20), p.2688-2697
Main Authors: He, Cai Y., Zhang, Guo Y., Zhang, Jian G., Duan, Ai G., Luo, Hong M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The effects of drought on plant growth and development are occurring as a result of climate change and the growing scarcity of water resources. Hippophae rhamnoides has been exploited for soil and water conservation for many years. However, the outstanding drought‐resistance mechanisms possessed by this species remain unclear. The protein, physiological, and biochemical responses to medium and severe drought stresses in H. rhamnoides seedlings are analyzed. Linear decreases in photosynthesis rate, transpiration rate, and the content of indole acetic acid in roots, as well as a linear increase in the contents of abscisic acid, superoxide dismutase, glutathione reductase, and zeatin riboside in leaves are observed as water potential decreased. At the same time, cell membrane permeability, malondialdehyde, stomatal conductance, water use efficiency, and contents of zeatin riboside in roots and indole acetic acid in leaves showed nonconsistent changes. DIGE and MS/MS analysis identified 51 differently expressed protein spots in leaves with functions related to epigenetic modification and PTM in addition to normal metabolism, photosynthesis, signal transduction, antioxidative systems, and responses to stimuli. This study provides new insights into the responses and adaptations in this drought‐resistant species and may benefit future agricultural production.
ISSN:1615-9853
1615-9861
DOI:10.1002/pmic.201600160