Loading…
On the Multiple Functional Roles of the Active Site Histidine in Catalysis and Allosteric Regulation of Escherichia coli Glucosamine 6-Phosphate Deaminase
The active site of glucosamine-6-phosphate deaminase (EC 3.5.99.6, formerly 5.3.1.10) from Escherichia coli was first characterized on the basis of the crystallographic structure of the enzyme bound to the competitive inhibitor 2-amino-2-deoxy-glucitol 6-phosphate. The structure corresponds to the R...
Saved in:
Published in: | Biochemistry (Easton) 2001-08, Vol.40 (34), p.10187-10196 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The active site of glucosamine-6-phosphate deaminase (EC 3.5.99.6, formerly 5.3.1.10) from Escherichia coli was first characterized on the basis of the crystallographic structure of the enzyme bound to the competitive inhibitor 2-amino-2-deoxy-glucitol 6-phosphate. The structure corresponds to the R allosteric state of the enzyme; it shows the side-chain of His143 in close proximity to the O5 atom of the inhibitor. This arrangement suggests that His143 could have a role in the catalysis of the ring-opening step of glucosamine 6-phosphate whose α-anomer is the true substrate. The imidazole group of this active-site histidine contacts the carboxy groups from Glu148 and Asp141, via its Nδ1 atom [Oliva et al. (1995) Structure 3, 1323−1332]. These interactions change in the T state because the side chain of Glu148 moves toward the allosteric site, leaving at the active site the dyad Asp141-His143 [Horjales et al. (1999) Structure 7, 527−536]. In this research, a dual approach using site-directed mutagenesis and controlled chemical modification of histidine residues has been used to investigate the role of the active-site histidine. Our results support a multifunctional role of His143; in the forward reaction, it is involved in the catalysis of the ring-opening step of the substrate, glucosamine 6-P. In the reverse reaction, the substrate fructose 6-P binds in its open chain, carbonylic form. The role of His143 in the binding of both glucosamine 6-P and reaction intermediates in their extended-chain forms was demonstrated by binding experiments using the reaction intermediate analogue, 2-amino-2-deoxy-d-glucitol 6-phosphate. His143 was also shown to be a critical residue for the conformational coupling between active and allosteric sites. From the pH dependence of the reactivity of the active site histidine to diethyl dicarbonate, we observed a pK a change of 1.2 units to the acid side when the enzyme undergoes the allosteric T to R transition during which the side chain of Glu148 moves toward the active site. The kinetic study of the Glu148-Gln mutant deaminase shows that the loss of the carboxy group and its replacement with the corresponding amide modifies the k cat versus pH profile of the enzyme, suggesting that the catalytic step requiring the participation of His143 has become rate-limiting. This, in turn, indicates that the interaction Glu148-His143 in the wild-type enzyme in the R state contributes to make the enzyme functional over a wide pH range. |
---|---|
ISSN: | 0006-2960 1520-4995 |
DOI: | 10.1021/bi0105835 |