Loading…
Initial dissolution of D2O at the gas-liquid interface of the ionic liquid [C4min][NTf2] associated with hydrogen-bond network formation
We have studied the initial dissolution of D2O at the interfacial surface of the flowing jet sheet beam of the ionic liquid (IL) [C4min][NTf2] using the King and Wells method as a function of both the temperature and collision energy of the IL. The initial dissolution probability of D2O into the IL...
Saved in:
Published in: | Physical chemistry chemical physics : PCCP 2016, Vol.18 (40), p.28061-28068 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We have studied the initial dissolution of D2O at the interfacial surface of the flowing jet sheet beam of the ionic liquid (IL) [C4min][NTf2] using the King and Wells method as a function of both the temperature and collision energy of the IL. The initial dissolution probability of D2O into the IL [C4min][NTf2] was found to follow the general propensity that the solubility of gases into a liquid decreases with temperature. However, a large partial molar enthalpy and entropy for the initial dissolution of D2O in the IL [C4min][NTf2] were observed from the temperature dependence of the initial dissolution probability: ΔHl = -53 ± 8 kJ mol-1, ΔSl = -210 ± 30 J mol-1 K-1. In addition, it was found that the collision energy significantly reduced the initial dissolution probability. We propose that the associated D2O molecules at the interface of the IL [C4min][NTf2] make a hydrogen-bond network around the [NTf2]- anion before dissolution into the deeper portion of the interface layer. |
---|---|
ISSN: | 1463-9076 1463-9084 |
DOI: | 10.1039/c6cp03448a |