Loading…
Application of Dual Protease Column for HDX-MS Analysis of Monoclonal Antibodies
A co-immobilized, dual protease column was developed and implemented to more efficiently digest IgG molecules for hydrogen/deuterium exchange mass spectrometry (HDX-MS). The low-pH proteolytic enzymes pepsin and type XIII protease from Aspergillus were packed into a single column to most effectively...
Saved in:
Published in: | Journal of pharmaceutical sciences 2017-02, Vol.106 (2), p.530-536 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A co-immobilized, dual protease column was developed and implemented to more efficiently digest IgG molecules for hydrogen/deuterium exchange mass spectrometry (HDX-MS). The low-pH proteolytic enzymes pepsin and type XIII protease from Aspergillus were packed into a single column to most effectively combine the complementary specificities. The method was optimized using an IgG2 monoclonal antibody as a substrate because they are known to be more difficult to efficiently digest. The general applicability of the method was then demonstrated using IgG1 and IgG4 mAbs. The dual protease column and optimized method yielded improved digestion efficiency, as measured by the increased number of smaller, overlapping peptides in comparison with pepsin or type XIII alone, making HDX-MS more suitable for measuring deuterium uptake with higher resolution. The enhanced digestion efficiency and increased sequence coverage enables the routine application of HDX-MS to all therapeutic IgG molecules for investigations of higher order structure, especially when posttranslational and storage-induced modifications are detected, providing further product understanding for structure–function relationships and ultimately ensuring clinical safety and efficacy. |
---|---|
ISSN: | 0022-3549 1520-6017 |
DOI: | 10.1016/j.xphs.2016.10.023 |