Loading…
Automated hazard analysis of digital control systems
Digital instrumentation and control (I&C) systems can provide important benefits in many safety-critical applications, but they can also introduce potential new failure modes that can affect safety. Unlike electro-mechanical systems, whose failure modes are fairly well understood and which can o...
Saved in:
Published in: | Reliability engineering & system safety 2002-07, Vol.77 (1), p.1-17 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Digital instrumentation and control (I&C) systems can provide important benefits in many safety-critical applications, but they can also introduce potential new failure modes that can affect safety. Unlike electro-mechanical systems, whose failure modes are fairly well understood and which can often be built to fail in a particular way, software errors are very unpredictable. There is virtually no nontrivial software that will function as expected under all conditions. Consequently, there is a great deal of concern about whether there is a sufficient basis on which to resolve questions about safety. In this paper, an approach for validating the safety requirements of digital I&C systems is developed which uses the Dynamic Flowgraph Methodology to conduct automated hazard analyses. The prime implicants of these analyses can be used to identify unknown system hazards, prioritize the disposition of known system hazards, and guide lower-level design decisions to either eliminate or mitigate known hazards. In a case study involving a space-based reactor control system, the method succeeded in identifying an unknown failure mechanism. |
---|---|
ISSN: | 0951-8320 1879-0836 |
DOI: | 10.1016/S0951-8320(02)00007-8 |