Loading…

Exponential Relationships Capturing Atomistic Short-Range Repulsion from the Interacting Quantum Atoms (IQA) Method

A topological atom is a quantum object with a well-defined intra-atomic energy, which includes kinetic energy, Coulomb energy, and exchange energy. In the context of intermolecular interactions, this intra-atomic energy is calculated from supermolecular wave functions, by using the topological parti...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2016-12, Vol.120 (48), p.9647-9659
Main Authors: Wilson, Alex L, Popelier, Paul L. A
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A topological atom is a quantum object with a well-defined intra-atomic energy, which includes kinetic energy, Coulomb energy, and exchange energy. In the context of intermolecular interactions, this intra-atomic energy is calculated from supermolecular wave functions, by using the topological partitioning. This partitioning is parameter-free and invokes only the electron density to obtain the topological atoms. In this work, no perturbation theory is used; instead, a single wave function describes the behavior of all van der Waals complexes studied. As the monomers approach each other, frontier atoms deform, which can be monitored through a change in their shape and volume. Here we show that the corresponding atomic deformation energy is very well described by an exponential function, which matches the well-known Buckingham repulsive potential. Moreover, we recover a combination rule that enables the interatomic repulsion energy between topological atoms A and B to be expressed as a function of the interatomic repulsion energy between A and A on one hand, and between B and B on the other hand. As a result a link is established between quantum topological atomic energies and classical well-known interatomic repulsive potentials.
ISSN:1089-5639
1520-5215
DOI:10.1021/acs.jpca.6b10295