Loading…

Exponential Relationships Capturing Atomistic Short-Range Repulsion from the Interacting Quantum Atoms (IQA) Method

A topological atom is a quantum object with a well-defined intra-atomic energy, which includes kinetic energy, Coulomb energy, and exchange energy. In the context of intermolecular interactions, this intra-atomic energy is calculated from supermolecular wave functions, by using the topological parti...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2016-12, Vol.120 (48), p.9647-9659
Main Authors: Wilson, Alex L, Popelier, Paul L. A
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a378t-95933039dae6044bf0363a91340599e765a409ef60584ee8630d04b0c40d1a003
cites cdi_FETCH-LOGICAL-a378t-95933039dae6044bf0363a91340599e765a409ef60584ee8630d04b0c40d1a003
container_end_page 9659
container_issue 48
container_start_page 9647
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 120
creator Wilson, Alex L
Popelier, Paul L. A
description A topological atom is a quantum object with a well-defined intra-atomic energy, which includes kinetic energy, Coulomb energy, and exchange energy. In the context of intermolecular interactions, this intra-atomic energy is calculated from supermolecular wave functions, by using the topological partitioning. This partitioning is parameter-free and invokes only the electron density to obtain the topological atoms. In this work, no perturbation theory is used; instead, a single wave function describes the behavior of all van der Waals complexes studied. As the monomers approach each other, frontier atoms deform, which can be monitored through a change in their shape and volume. Here we show that the corresponding atomic deformation energy is very well described by an exponential function, which matches the well-known Buckingham repulsive potential. Moreover, we recover a combination rule that enables the interatomic repulsion energy between topological atoms A and B to be expressed as a function of the interatomic repulsion energy between A and A on one hand, and between B and B on the other hand. As a result a link is established between quantum topological atomic energies and classical well-known interatomic repulsive potentials.
doi_str_mv 10.1021/acs.jpca.6b10295
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1847894719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1847894719</sourcerecordid><originalsourceid>FETCH-LOGICAL-a378t-95933039dae6044bf0363a91340599e765a409ef60584ee8630d04b0c40d1a003</originalsourceid><addsrcrecordid>eNp1kEtLxDAURoMovveuJEsFO940Sdssh8HHgCK-1iXT3jqVNqlJCvrvzTijO1e5gXM-7v0IOWEwYZCyS135yftQ6Um2iH8lt8g-kykkMmVyO85QqERmXO2RA-_fAYDxVOySvTRXnCuW7xN_9TlYgya0uqNP2OnQWuOX7eDpTA9hdK15o9Ng-9aHtqLPS-tC8qTNG0Z6GDsfcdo429OwRDo3AZ2uwkp6HLUJY_8je3o2f5ye03sMS1sfkZ1Gdx6PN-8heb2-epndJncPN_PZ9C7RPC9ComRcEriqNWYgxKIBnnGtGBcglcI8k1qAwiYDWQjEIuNQg1hAJaBmGoAfkrN17uDsx4g-lPGKCrtOG7SjL1kh8kKJnKmIwhqtnPXeYVMOru21-yoZlKuqy1h1uaq63FQdldNN-rjosf4TfruNwMUa-FHt6Ew89v-8b7mnikw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1847894719</pqid></control><display><type>article</type><title>Exponential Relationships Capturing Atomistic Short-Range Repulsion from the Interacting Quantum Atoms (IQA) Method</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Wilson, Alex L ; Popelier, Paul L. A</creator><creatorcontrib>Wilson, Alex L ; Popelier, Paul L. A</creatorcontrib><description>A topological atom is a quantum object with a well-defined intra-atomic energy, which includes kinetic energy, Coulomb energy, and exchange energy. In the context of intermolecular interactions, this intra-atomic energy is calculated from supermolecular wave functions, by using the topological partitioning. This partitioning is parameter-free and invokes only the electron density to obtain the topological atoms. In this work, no perturbation theory is used; instead, a single wave function describes the behavior of all van der Waals complexes studied. As the monomers approach each other, frontier atoms deform, which can be monitored through a change in their shape and volume. Here we show that the corresponding atomic deformation energy is very well described by an exponential function, which matches the well-known Buckingham repulsive potential. Moreover, we recover a combination rule that enables the interatomic repulsion energy between topological atoms A and B to be expressed as a function of the interatomic repulsion energy between A and A on one hand, and between B and B on the other hand. As a result a link is established between quantum topological atomic energies and classical well-known interatomic repulsive potentials.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/acs.jpca.6b10295</identifier><identifier>PMID: 27933917</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2016-12, Vol.120 (48), p.9647-9659</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a378t-95933039dae6044bf0363a91340599e765a409ef60584ee8630d04b0c40d1a003</citedby><cites>FETCH-LOGICAL-a378t-95933039dae6044bf0363a91340599e765a409ef60584ee8630d04b0c40d1a003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27933917$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wilson, Alex L</creatorcontrib><creatorcontrib>Popelier, Paul L. A</creatorcontrib><title>Exponential Relationships Capturing Atomistic Short-Range Repulsion from the Interacting Quantum Atoms (IQA) Method</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>A topological atom is a quantum object with a well-defined intra-atomic energy, which includes kinetic energy, Coulomb energy, and exchange energy. In the context of intermolecular interactions, this intra-atomic energy is calculated from supermolecular wave functions, by using the topological partitioning. This partitioning is parameter-free and invokes only the electron density to obtain the topological atoms. In this work, no perturbation theory is used; instead, a single wave function describes the behavior of all van der Waals complexes studied. As the monomers approach each other, frontier atoms deform, which can be monitored through a change in their shape and volume. Here we show that the corresponding atomic deformation energy is very well described by an exponential function, which matches the well-known Buckingham repulsive potential. Moreover, we recover a combination rule that enables the interatomic repulsion energy between topological atoms A and B to be expressed as a function of the interatomic repulsion energy between A and A on one hand, and between B and B on the other hand. As a result a link is established between quantum topological atomic energies and classical well-known interatomic repulsive potentials.</description><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAURoMovveuJEsFO940Sdssh8HHgCK-1iXT3jqVNqlJCvrvzTijO1e5gXM-7v0IOWEwYZCyS135yftQ6Um2iH8lt8g-kykkMmVyO85QqERmXO2RA-_fAYDxVOySvTRXnCuW7xN_9TlYgya0uqNP2OnQWuOX7eDpTA9hdK15o9Ng-9aHtqLPS-tC8qTNG0Z6GDsfcdo429OwRDo3AZ2uwkp6HLUJY_8je3o2f5ye03sMS1sfkZ1Gdx6PN-8heb2-epndJncPN_PZ9C7RPC9ComRcEriqNWYgxKIBnnGtGBcglcI8k1qAwiYDWQjEIuNQg1hAJaBmGoAfkrN17uDsx4g-lPGKCrtOG7SjL1kh8kKJnKmIwhqtnPXeYVMOru21-yoZlKuqy1h1uaq63FQdldNN-rjosf4TfruNwMUa-FHt6Ew89v-8b7mnikw</recordid><startdate>20161208</startdate><enddate>20161208</enddate><creator>Wilson, Alex L</creator><creator>Popelier, Paul L. A</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20161208</creationdate><title>Exponential Relationships Capturing Atomistic Short-Range Repulsion from the Interacting Quantum Atoms (IQA) Method</title><author>Wilson, Alex L ; Popelier, Paul L. A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a378t-95933039dae6044bf0363a91340599e765a409ef60584ee8630d04b0c40d1a003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilson, Alex L</creatorcontrib><creatorcontrib>Popelier, Paul L. A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilson, Alex L</au><au>Popelier, Paul L. A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exponential Relationships Capturing Atomistic Short-Range Repulsion from the Interacting Quantum Atoms (IQA) Method</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2016-12-08</date><risdate>2016</risdate><volume>120</volume><issue>48</issue><spage>9647</spage><epage>9659</epage><pages>9647-9659</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>A topological atom is a quantum object with a well-defined intra-atomic energy, which includes kinetic energy, Coulomb energy, and exchange energy. In the context of intermolecular interactions, this intra-atomic energy is calculated from supermolecular wave functions, by using the topological partitioning. This partitioning is parameter-free and invokes only the electron density to obtain the topological atoms. In this work, no perturbation theory is used; instead, a single wave function describes the behavior of all van der Waals complexes studied. As the monomers approach each other, frontier atoms deform, which can be monitored through a change in their shape and volume. Here we show that the corresponding atomic deformation energy is very well described by an exponential function, which matches the well-known Buckingham repulsive potential. Moreover, we recover a combination rule that enables the interatomic repulsion energy between topological atoms A and B to be expressed as a function of the interatomic repulsion energy between A and A on one hand, and between B and B on the other hand. As a result a link is established between quantum topological atomic energies and classical well-known interatomic repulsive potentials.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27933917</pmid><doi>10.1021/acs.jpca.6b10295</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2016-12, Vol.120 (48), p.9647-9659
issn 1089-5639
1520-5215
language eng
recordid cdi_proquest_miscellaneous_1847894719
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Exponential Relationships Capturing Atomistic Short-Range Repulsion from the Interacting Quantum Atoms (IQA) Method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T18%3A02%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exponential%20Relationships%20Capturing%20Atomistic%20Short-Range%20Repulsion%20from%20the%20Interacting%20Quantum%20Atoms%20(IQA)%20Method&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Wilson,%20Alex%20L&rft.date=2016-12-08&rft.volume=120&rft.issue=48&rft.spage=9647&rft.epage=9659&rft.pages=9647-9659&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/acs.jpca.6b10295&rft_dat=%3Cproquest_cross%3E1847894719%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a378t-95933039dae6044bf0363a91340599e765a409ef60584ee8630d04b0c40d1a003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1847894719&rft_id=info:pmid/27933917&rfr_iscdi=true