Loading…

Oceanic Influences on the Seasonal Cycle in Evaporation over the Indian Ocean

The annual mean and seasonal cycle in latent heating over the Indian Ocean are investigated using a simple, analytical ocean model and a 3D, numerical, ocean model coupled to a prescribed atmosphere, which permits interaction through sea surface temperature (SST). The role of oceanic divergence in d...

Full description

Saved in:
Bibliographic Details
Published in:Journal of climate 2001-03, Vol.14 (6), p.1199-1226
Main Authors: Wajsowicz, Roxana C., Schopf, Paul S.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The annual mean and seasonal cycle in latent heating over the Indian Ocean are investigated using a simple, analytical ocean model and a 3D, numerical, ocean model coupled to a prescribed atmosphere, which permits interaction through sea surface temperature (SST). The role of oceanic divergence in determining the seasonal cycle in evaporation rate is reexamined from the viewpoint that the amount of rainfall over India during the southwest monsoon is a function of the amount of water evaporated over the “monsoon streamtube” as well as orographically induced convective activity. Analysis of Comprehensive Ocean–Atmosphere Dataset (COADS) shows that nearly 90% of the water vapor available to precipitate over India during the southwest monsoon results from the annual mean evaporation field. The seasonal change in direction of airflow, which opens up a pathway from the southern Indian Ocean to the Arabian Sea, rather than the change in evaporation rate is key to explaining the climatological cycle, though the change in latent heating due to seasonal variations is similar to that needed to account for observed interannual-to- interdecadal variability in monsoon rainfall. The simple model shows that net oceanic heat advection is not required to sustain vigorous evaporation over the southern tropical Indian Ocean; its importance lies in ensuring that the maximum evaporation occurs during boreal summer. Also shown with the simple model is that evaporation over the Arabian Sea cannot increase sufficiently to make up for the loss of water vapor accumulated over the southern Indian Ocean should there be a change in circulation such that the Southern Ocean is no longer part of the monsoon streamtube. Analytical, periodic solutions of the linearized heat balance equation for the simple model are presented under the assumption that the residual of net surface heat flux minus rate of change of heat content (DIV) is considered to be an external periodic forcing independent of SST to first order. These solutions, expressed as functions of the amplitude and phase of DIV, lie in two regimes. The first regime is characterized by increases (decreases) in the amplitude of DIV resulting in an increase (decrease) in the amplitude of the solution. In contrast, in the second regime, the amplitude of the solution decreases (increases) as the amplitude of DIV increases (decreases). It is noteworthy that the regime boundaries for SST and latent heating do not necessarily coincide. For t
ISSN:0894-8755
1520-0442
DOI:10.1175/1520-0442(2001)014<1199:oiotsc>2.0.co;2