Loading…

Response of nitrogen cycling to simulated climate change: differential responses along a subalpine ecotone

Summary In situ nitrogen (N) transformations and N availability were examined over a four‐year period in two soil microclimates (xeric and mesic) under a climate‐warming treatment in a subalpine meadow/sagebrush scrub ecotone. Experimental plots that spanned the two soil microclimates were exposed t...

Full description

Saved in:
Bibliographic Details
Published in:Global change biology 2001-02, Vol.7 (2), p.193-210
Main Authors: Shaw, M. Rebecca, Harte, John
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Summary In situ nitrogen (N) transformations and N availability were examined over a four‐year period in two soil microclimates (xeric and mesic) under a climate‐warming treatment in a subalpine meadow/sagebrush scrub ecotone. Experimental plots that spanned the two soil microclimates were exposed to an in situ infrared (IR) climate change manipulation at the Rocky Mountain Biological Laboratory, near Crested Butte, Colorado. Although the two microclimates did not differ significantly in their rates of N transformations in the absence of heating, they differed significantly in their response to increased IR. Under a simulated warming in the sagebrush‐dominated xeric microclimate, gross N mineralization rates doubled and immobilization rates increased by up to 60% over the first 2 years of the study but declined to predisturbance rates by the fourth year. This temporal pattern of gross mineralization rates correlated with a decline in SOM. Concurrently, rates of net mineralization rates in the heated plots were 60% higher than the controls after the first year. There were no differences in gross or net nitrification rates with heating in the xeric soils. In contrast to the xeric microclimate, there were no significant effects of heating on any N transformation rates in the mesic microclimate. The differing responses in N cycling rates of the two microclimate to the increased IR is most certainly the result of differences in initial soil moisture conditions and vegetation type and cover.
ISSN:1354-1013
1365-2486
DOI:10.1046/j.1365-2486.2001.00390.x