Loading…
On interacting bee/mite populations: a stochastic model with analysis using cumulant truncation
Parasitism by the Varroa mite has had recent drastic impact on both managed and feral bee colonies. This paper proposes a stochastic population dynamics model for interacting African bee colony and Varroa mite populations. Cumulant truncation procedures are used to obtain approximate transient cumul...
Saved in:
Published in: | Environmental and ecological statistics 2002-09, Vol.9 (3), p.237-258 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Parasitism by the Varroa mite has had recent drastic impact on both managed and feral bee colonies. This paper proposes a stochastic population dynamics model for interacting African bee colony and Varroa mite populations. Cumulant truncation procedures are used to obtain approximate transient cumulant functions, unconstrained by the usual assumption of bivariate Normality, for an assumed large-scale model. The apparent size of the variance and skewness functions suggest the importance of the proposed truncation procedure which retains some higher-order cumulants, but determining the accuracy of the approximations is problematical. A smaller-scale bee/Varroa mite model is hence proposed and investigated. The accuracy for the means is exceptional, for the second-order cumulants is moderate, and for some third-order cumulants is poor. Notwithstanding the poor accuracy of a skewness approximation, the saddlepoint approximations for the marginal transient population size distributions are excellent. The cumulant truncation methodology is very general, and research is continuing in its application to this new class of host-parasite models.[PUBLICATION ABSTRACT] |
---|---|
ISSN: | 1352-8505 1573-3009 |
DOI: | 10.1023/A:1016288125991 |