Loading…

Multiphase Ozonolysis of Aqueous α‑Terpineol

Multiphase ozonolysis of aqueous organics presents a potential pathway for the formation of aqueous secondary organic aerosol (aqSOA). We investigated the multiphase ozonolysis of α-terpineol, an oxygenated derivative of limonene, and found that the reaction products and kinetics differ from the gas...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science & technology 2016-11, Vol.50 (21), p.11698-11705
Main Authors: Leviss, Dani H, Van Ry, Daryl A, Hinrichs, Ryan Z
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Multiphase ozonolysis of aqueous organics presents a potential pathway for the formation of aqueous secondary organic aerosol (aqSOA). We investigated the multiphase ozonolysis of α-terpineol, an oxygenated derivative of limonene, and found that the reaction products and kinetics differ from the gas-phase ozonolysis of α-terpineol. One- and two-dimensional NMR spectroscopies along with GC-MS identified the aqueous ozonolysis reaction products as trans- and cis-lactols [4-(5-hydroxy-2,2-dimethyltetrahydrofuran-3-yl)­butan-2-one] and a lactone [4-hydroxy-4-methyl-3-(3-oxobutyl)-valeric acid gamma-lactone], which accounted for 46%, 27%, and 20% of the observed products, respectively. Hydrogen peroxide was also formed in 10% yield consistent with a mechanism involving decomposition of hydroxyl hydroperoxide intermediates followed by hemiacetal ring closure. Multiphase reaction kinetics at gaseous ozone concentrations of 131, 480, and 965 parts-per-billion were analyzed using a resistance model of net ozone uptake and found the second-order rate coefficient for the aqueous reaction of α-terpineol + O3 to be 9.9(±3.3) × 106 M–1 s–1. Multiphase ozonolysis will therefore be competitive with multiphase oxidation by hydroxyl radicals (OH) and ozonolysis of gaseous α-terpineol. We also measured product yields for the heterogeneous ozonolysis of α-terpineol adsorbed on glass, NaCl, and kaolinite, and identified the same three major products but with an increasing lactone yield of 33, 49, and 55% on these substrates, respectively.
ISSN:0013-936X
1520-5851
DOI:10.1021/acs.est.6b03612