Loading…
Approaches for Controlled Ag+ Ion Release: Influence of Surface Topography, Roughness, and Bactericide Content
Silver is the most famous bactericidal element known from ancient times. Its antibacterial and antifungal effects are typically associated with the Ag ionization and concentration of Ag+ ions in a bacterial culture. Herein we thoroughly studied the influence of surface topography and roughness on th...
Saved in:
Published in: | ACS applied materials & interfaces 2017-02, Vol.9 (4), p.4259-4271 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Silver is the most famous bactericidal element known from ancient times. Its antibacterial and antifungal effects are typically associated with the Ag ionization and concentration of Ag+ ions in a bacterial culture. Herein we thoroughly studied the influence of surface topography and roughness on the rate of Ag+ ion release. We considered two types of biocompatible and bioactive TiCaPCON-Ag films with 1 and 2 at. % of Ag and nine types of Ti surfaces with an average roughness varying in the range from 5.4 × 10–2 to 12.6 μm and different topographic features obtained through polishing, sandblasting, laser treatment, and pulsed electrospark deposition. It is demonstrated that the Ag+ ion release rates do not depend on the Ag content in the films as the main parameter, and it is other factors, such as the state of Ag agglomeration, surface topography and roughness, as well as kinetics of surface oxidation, that play a critical role. The obtained results clearly show a synergistic effect of the Ag content in the film and surface topography and roughness on Ag+ ion release. By changing the surface topographical features at a constant content of bactericidal element, we showed that the Ag+ ion release can be either accelerated by 2.5 times or almost completely suppressed. Despite low Ag+ ion concentration in physiological solution ( |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.6b15096 |