Loading…

The influence of durability and recycling on life cycle impacts of window frame assemblies

Purpose A set of comparative life cycle assessment case studies were undertaken to explore key issues relating to the environmental impacts of building materials. The case studies explore modeling practice for long-life components by investigating (1) recycled content and end-of-life recycling scena...

Full description

Saved in:
Bibliographic Details
Published in:The international journal of life cycle assessment 2016-11, Vol.21 (11), p.1645-1657
Main Authors: Carlisle, Stephanie, Friedlander, Elizabeth
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purpose A set of comparative life cycle assessment case studies were undertaken to explore key issues relating to the environmental impacts of building materials. The case studies explore modeling practice for long-life components by investigating (1) recycled content and end-of-life recycling scenarios and (2) service life and maintenance scenarios. The study uses a window unit frames as the object of comparison, allowing for exploration of multiple materials and assembly techniques. Methods Four window frame types were compared: aluminum, wood, aluminum-clad wood, and unplasticized PVC (PVCu). These used existing product life cycle inventory data which included primary frame material, coatings, weather stripping sealants, but not glazing. The functional unit was a window frame required to produce 1 m 2 of visible glazing, with similar thermal performance over a building lifespan of 80 years. The frames were compared using both the end-of-life and recycled content methods for end-of-life scenarios. The models were also tested using custom-use scenarios. Results and discussion Well-maintained aluminum window frames proved to be the least impactful option across all categories, in large part due to the credits delivered from recycling and expectations of long-life. Wood window frames had the least variability associated with maintenance and durability. The global warming potential (GWP) of a moderately maintained aluminum assembly was found to be 68 % less than PVCu and 50 % less than aluminum-clad wood. Using a long-life scenario, wood windows were found to have a 7 % lower GWP than the long-life scenario for aluminum-clad woods. Moderately and well-maintained aluminum windows require less energy to be produced and maintained over their lifetime than any of the wood scenarios. Expectations of service life proved to be the most important factor in considering environmental impact of frame materials. Conclusions The research shows significant gaps in available data—such as average realized life expectancies of common building components—while further underscoring that recycling rates are a driving factor in the environmental impact of aluminum building products. A modeling shift from the recycled content method to the end-of-life recycling method should promote goals of material recovery over pursuit of material with high recycled content. Hybrid methods, such as the use of Module D, may bridge the divide between these two approaches by providing due credit
ISSN:0948-3349
1614-7502
DOI:10.1007/s11367-016-1093-x