Loading…

Strength Development of Lime Treated Artificial Organic Soil

In over many years, considerable research has been carried out on organic soils which consists of various components of organic matter but the effect of particular organic matter is less reported. Thus, some of contributing factors for each organic matter are not fully understood yet. Hence, the aim...

Full description

Saved in:
Bibliographic Details
Published in:IOP conference series. Materials Science and Engineering 2016-07, Vol.136 (1), p.12011-12016
Main Authors: Yeo, S W, Ling, F N L, Sulaeman, A, Low, V S, Toh, K L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In over many years, considerable research has been carried out on organic soils which consists of various components of organic matter but the effect of particular organic matter is less reported. Thus, some of contributing factors for each organic matter are not fully understood yet. Hence, the aim of this study is to determine the effect of organic acid concentration on the strength of artificial organic soil. There are four types of artificial organic soil created by mixing kaolin (inorganic matter) and organic acid (a kind of humified organic matter) in different concentrations. Unconfined Compressive Strength test (UCT) was carried out for all soil samples after being cured for 7 and 28 days under room temperature and 50°C. Soil samples shows highest strength when cured for 28 days under 50°C compared to those cured under room temperature. However, when the organic acid concentration decrease, the strength increased for soil 2 after 7 and 28 days cured under room temperature and 50°C. Apart from this, soil 3 and soil 4 that were cured under room temperature shows decrease in strength when the organic acid concentration decreasing but different result shown for both samples when cured under 50°C.
ISSN:1757-8981
1757-899X
DOI:10.1088/1757-899X/136/1/012011