Loading…
Metallic CsI at pressures of up to 220 gigapascals
Direct electrical transport measurements in a diamond anvil cell provide evidence for the metallization of cesium iodide (CsI) at a pressure of 115 gigapascals. A drop in the temperature dependence of the resistance was found at pressures above 180 gigapascals, indicating that the CsI was supercondu...
Saved in:
Published in: | Science (American Association for the Advancement of Science) 1998-08, Vol.281 (5381), p.1333-1335 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Direct electrical transport measurements in a diamond anvil cell provide evidence for the metallization of cesium iodide (CsI) at a pressure of 115 gigapascals. A drop in the temperature dependence of the resistance was found at pressures above 180 gigapascals, indicating that the CsI was superconductive. The superconductivity changed under the influence of a magnetic field to a lower critical temperature and disappeared above 0.3 tesla. The highest critical temperature at which superconductivity was observed was 2 kelvin, and the critical temperature decreased with increasing pressure. |
---|---|
ISSN: | 0036-8075 1095-9203 |
DOI: | 10.1126/science.281.5381.1333 |