Loading…

Total Synthesis of Dehydrodidemnin B. Use of Uronium and Phosphonium Salt Coupling Reagents in Peptide Synthesis in Solution

New total syntheses of didemnin A and of dehydrodidemnin B are described. The latter didemnin has the highest antiproliferative activity of all members of this family of macrocyclic depsipeptides. It was produced on coupling the side chain Pyr-Pro-OH to didemnin A, which was itself synthesized by tw...

Full description

Saved in:
Bibliographic Details
Published in:Journal of organic chemistry 1997-01, Vol.62 (2), p.354-366
Main Authors: Jou, Gemma, González, Isabel, Albericio, Fernando, Lloyd-Williams, Paul, Giralt, Ernest
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:New total syntheses of didemnin A and of dehydrodidemnin B are described. The latter didemnin has the highest antiproliferative activity of all members of this family of macrocyclic depsipeptides. It was produced on coupling the side chain Pyr-Pro-OH to didemnin A, which was itself synthesized by two novel routes. One of these was based on the elaboration of a linear heptadepsipeptide incorporating the first amino acid of the didemnin side chain, (R)-N(Me)-Leu. Deprotection of the amino and carboxyl terminii of this linear precursor followed by macrocyclization gave a protected derivative of didemnin A. The second route involved synthesis of the Boc-protected didemnin macrocycle from a linear hexadepsipeptide lacking (R)-N(Me)-Leu. Removal of the Boc group from the macrocycle followed by its coupling with Boc-(R)-N(Me)-Leu-OH then gave Boc-didemnin A. The overall yield was much higher for the second strategy (27% compared to 4% for the first synthesis), but both allowed synthetic didemnin A, identical with a natural sample, to be prepared. Extensive use was made of phosphonium and uronium salt-based coupling reagents, such as BOP, PyBrOP, PyAOP, HBTU, and HATU for the formation of both the secondary and tertiary amide bonds present in these complex depsipeptides.
ISSN:0022-3263
1520-6904
DOI:10.1021/jo961932h