Loading…

Increases of chlorophyll a/b ratios during acclimation of tropical woody seedlings to nitrogen limitation and high light

ABSTRACT According to the theory of optimal nitrogen partitioning within a leaf, the chlorophyll (Chl) a/b ratio is expected to increase when leaf N content decreases. Here, we report the first empirical support for this prediction. The Chl a/b ratio increased while Chl content decreased in response...

Full description

Saved in:
Bibliographic Details
Published in:Plant, cell and environment cell and environment, 2003-06, Vol.26 (6), p.857-865
Main Authors: KITAJIMA, K., HOGAN, K. P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:ABSTRACT According to the theory of optimal nitrogen partitioning within a leaf, the chlorophyll (Chl) a/b ratio is expected to increase when leaf N content decreases. Here, we report the first empirical support for this prediction. The Chl a/b ratio increased while Chl content decreased in response to N limitation in photosynthetic cotyledons and leaves of seedlings of four tropical woody species in the Bignoniaceae. The responses of all four species were in the same direction, but differed in magnitude. For Tabebuia rosea, the species that exhibited the greatest increase in Chl a/b ratios (up to values of 5.9), detailed photosynthetic characteristics were also examined. Light and N availability were positively correlated with the light‐ and CO2‐saturated photosynthetic O2 evolution rate, as well as with leaf carboxylation capacity (Vcmax) and electron transport rate (Vj). Severe N limitation and high light did not cause chronic photo‐inhibition (i.e. no change in quantum yield or in dark‐acclimated Fv/Fm). The observed change in the ratio of Vcmax to leaf N in response to N availability was consistent with likely functional reasons for change in the Chl a/b ratio. Adjustment of the Chl a/b ratio was apparently an integral feature of acclimation to high light conditions and low N availability.
ISSN:0140-7791
1365-3040
DOI:10.1046/j.1365-3040.2003.01017.x