Loading…
Error-backpropagation in temporally encoded networks of spiking neurons
For a network of spiking neurons that encodes information in the timing of individual spike times, we derive a supervised learning rule, SpikeProp, akin to traditional error-backpropagation. With this algorithm, we demonstrate how networks of spiking neurons with biologically reasonable action poten...
Saved in:
Published in: | Neurocomputing (Amsterdam) 2002-10, Vol.48 (1), p.17-37 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | For a network of spiking neurons that encodes information in the timing of individual spike times, we derive a supervised learning rule,
SpikeProp, akin to traditional error-backpropagation. With this algorithm, we demonstrate how networks of spiking neurons with biologically reasonable action potentials can perform complex non-linear classification in fast temporal coding just as well as rate-coded networks. We perform experiments for the classical XOR problem, when posed in a temporal setting, as well as for a number of other benchmark datasets. Comparing the (implicit) number of spiking neurons required for the encoding of the interpolated XOR problem, the trained networks demonstrate that temporal coding is a viable code for fast neural information processing, and as such requires less neurons than instantaneous rate-coding. Furthermore, we find that reliable temporal computation in the spiking networks was only accomplished when using spike response functions with a time constant longer than the coding interval, as has been predicted by theoretical considerations. |
---|---|
ISSN: | 0925-2312 1872-8286 |
DOI: | 10.1016/S0925-2312(01)00658-0 |