Loading…

Osmoregulation in Saccharomyces cerevisiae via mechanisms other than the high-osmolarity glycerol pathway

The response of Saccharomyces cerevisiae to osmotic stress, whether arising from environmental conditions or physiological processes, has been intensively studied in the last two decades. The well-known high-osmolarity glycerol (HOG) signalling pathway that is induced in response to osmotic stress i...

Full description

Saved in:
Bibliographic Details
Published in:Microbiology (Society for General Microbiology) 2016-09, Vol.162 (9), p.1511-1526
Main Authors: Saxena, Abhishek, Sitaraman, Ramakrishnan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The response of Saccharomyces cerevisiae to osmotic stress, whether arising from environmental conditions or physiological processes, has been intensively studied in the last two decades. The well-known high-osmolarity glycerol (HOG) signalling pathway that is induced in response to osmotic stress interacts with other signalling pathways such as the cell wall integrity and the target of rapamycin pathways. Osmotic balance is also maintained by the regulated opening and closing of channel proteins in both the cell membrane and intracellular organelles such as the vacuole. Additionally, environmental stresses, including osmotic shock, induce intracellular calcium signalling. Thus, adaptation to environmental stresses in general, and osmotic stress in particular, is dependent on the concerted action of components of multiple interacting pathways. In this review, we describe some of the major mechanisms and molecules involved in osmoregulation via pathways other than the high-osmolarity glycerol pathway and their known interactions with one another that have been discovered over the last two decades.
ISSN:1350-0872
1465-2080
DOI:10.1099/mic.0.000360